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Hello and welcome to the sixth webinar in the Measurement Error Webinar Series. I’m 
Sharon Kirkpatrick with the Risk Factor Monitoring and Methods Branch at the U.S. 
National Cancer Institute. We’re excited to kick off our sessions focused on examining 
diet and health relationships with today’s webinar.   

Just before we get started, please note that the webinar is being recorded so that we 
can make it available on our Web site. All phone lines have been muted and will remain 
that way throughout the webinar.  There will be a question and answer session 
following the presentation; you can use the Chat feature to submit a question. 

A reminder: You can find the slides for today’s presentation on the Web site that has 
been set up for series participants. Other resources available include the glossary of key 
terms and notation, and the recordings of the preceding webinars.   

Now it’s my pleasure to introduce the presenter for today’s webinar. Dr. Laurence 
Freedman is Director of the Biostatistics Unit at the Gertner Institute for Epidemiology, 
where he directs a research and consulting program in biostatistics and advises the 
government on public health policy. He has published extensively in the biostatistical 
literature, with particular emphases on cancer research and nutritional epidemiology. 
He has previously worked for the British Medical Research Council and the U.S. National 
Cancer Institute, where he was part of the team that developed the Women’s Health 
Initiative and the AARP Nutritional Cohort Study. Today Dr. Freedman will introduce the 
problem of measurement error when examining diet and health relationships.  
Welcome Dr. Freedman.   

Thank you, Sharon.  

Good morning, afternoon, or evening to everyone. For me it is late afternoon. Today, I 
will be describing the problems caused by dietary measurement error when we are 
trying to elucidate relationships between our diet and our health. (L. Freedman) 
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This series is dedicated to the memory of our dear colleague, Arthur Schatzkin. 
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And here is a list of the presenters and collaborators in this webinar series. 
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Two main areas of interest
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For those who attended the first lecture, given by Sharon, you may remember that she 
mentioned two main themes to be covered in this series. One concerns the impact of 
measurement error on the estimation of usual intake distributions in the population. 
And the second concerns the impact of measurement error on the estimation of diet-
health relationships. 
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Two main areas of interest
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Well, the first theme is what you have mainly been hearing about in the first five 
lectures, and now in this sixth lecture, we are going to turn to the second theme 
regarding diet-health relationships.
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Objectives

Learning objectives


 


 


 

Knowing the types and magnitudes of 
measurement error that occur in dietary data

Reviewing statistical models for evaluating 
diet-health relationships

Understanding the qualitative and quantitative 
impact of measurement error on studies of 
diet-health relationships
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My aims today are: firstly, to inform you of the types of measurement error that we get 
in dietary data and their magnitude; secondly, to review some statistical models that we 
typically use to evaluate potential relationships between diet and health; and then to 
put these two parts together and explain the impact that dietary measurement error 
has on the results obtained from using these models. 
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INTRODUCTION
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We'll start with a general introduction.
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Introduction

Types of “analytic” studies


 


 


 


 


 


 

Animal experiments

Ecological studies

Cross-sectional studies

Case-control studies

Cohort studies

Randomized disease prevention trials

Red  Estimated diet-health relationship 
impacted by dietary measurement error
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There are a large variety of research designs that are used to investigate diet-health 
relationships, as seen in the list here, ranging from animal experiments down to 
randomized trials.  

However, not all of these are impacted equally by dietary measurement error. The 
designs that are typed in red here are the ones that are most affected and, of these, I 
will be focusing on case-control studies and, particularly, cohort studies as the designs 
that are most commonly used to address such questions. 
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



Introduction

The exposure (1)

 
In these studies we wish to relate: 

 
The measure of intake thought to be most 
relevant is: 

– usual intake, 
i.e., long-term average daily intake
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Our main aim in these studies is to investigate the potential relationship between the 
intake of a dietary component, usually a nutrient or food, and a health outcome, very 
often the diagnosis of a specific disease, but sometimes also the level of a marker 
related to disease risk. 

In investigating this question, although it is not always explicitly acknowledged, we are 
usually aiming to relate the usual intake of the dietary component to the health 
outcome, where by usual intake we mean a long-term average intake. 



The problem of measurement error when examining diet-health relationships10

Introduction

The exposure (2)





 
In surveillance studies, “long-term” is often taken 
to be 1 or 2 years

 
In cohort and case-control studies, it is less-well 
defined but often may be thought of as covering 
several years
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How long is long-term is also not often explicitly specified. In surveillance work, since 
population surveys are often conducted on an annual or biannual basis, the period is 
understood to be one or two years. In cohort and case-control studies it is less well-
defined, but you can think of it as covering several years. 
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Introduction

The exposure (3)





 
Clearly, to measure an individual’s average 
intake over a long period is a challenging task

 
Fortunately, one does not need to measure 
usual intake exactly in order to make progress
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Obviously, if measuring an individual's intake on a single day is no easy task, then 
measuring usual intake over several years is even harder. Fortunately, we don't have to 
measure it exactly to make progress. However, we have to accept that there will be 
some error in our measurement. 
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Introduction

Instruments (1)



– 

– 

– 


 – 

– 

– 

 
Food Frequency Questionnaires

Main instrument for large cohort and case-control 
studies

Inexpensive to administer

Aims to measure long-term average intake

BUT

Inaccurate long-term recall

Cognitively difficult

Conversion to nutrient and food group intakes is 
difficult
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The instrument for measuring an individual's usual intake that has been most widely 
used in cohort and case-control studies is the food frequency questionnaire. Its main 
advantages are of convenience and cost. It aims to capture usual intake but suffers from 
problems of inaccurate long-term recall and difficulties in cognition, and in the 
subsequent conversion of responses into nutrient and food group amounts. 
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Introduction

Instruments (2)
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This slide illustrates some of the cognitive difficulties. It is taken from the food 
frequency questionnaire used in the Nurses' Health Study. Notice on this page for fruits 
intake the instruction on the left-hand side of the page. I will read it out. "Please try to 
average your seasonal use of foods over the entire year. For example, if a food such as 
cantaloupe is eaten four times a week during the approximate three months that it is in 
season, then the average use would be once per week." Needless to say, such averaging 
in one's head is hard, even for a statistician.
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

– 

– 

– 

– 



– 

– 

 

 

Introduction

Instruments (3)

24-hour recall

Main instrument for surveillance studies

Questions what the individual ate over the past 
24 hrs

More accurate than FFQ (short-term recall only)

More detail makes conversion to nutrients easier

BUT

Very expensive to collect and code (up to now)

Does not target usual intake
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An alternative to the food frequency questionnaire is the 24 hour recall. That 
instrument does carry some advantages over the food frequency questionnaire, but it 
does not target usual intake and also has been very expensive to collect and code. 

Lately, a computerized version, the ASA24, has become available, and will soon be 
undergoing validation studies. It could be that a series of two to six computerized 24 
hour recalls may in the future provide an alternative, or more likely, an added option to 
the food frequency questionnaire. In lecture 10 in the series, Doug Midthune will talk 
about combining food frequency questionnaires and 24 hour recalls. However, for 
today, we will assume that the study instrument is a food frequency questionnaire. 
Dietary intakes will, of course, be measured with error. 
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TYPES OF MEASUREMENT 
ERROR
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In order to understand the impact of measurement error on study results, we first have 
to understand the different types of error that can arise. 
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Types of measurement error

Types of measurement error (1)


 

Additive systematic bias

– Systematic: the instrument introduces a bias 
that is common to all individuals

Ri = 0 + Ti

Ri denotes reported usual intake of individual i

Ti denotes true usual intake of individual i

(All reported values are different by the 
constant amount 0 from what they should be)
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The simplest type of error is called additive systematic bias. This occurs when an 
instrument causes every measurement to be too large or too small by a constant 
additive amount. In this equation the amount of the error is denoted by the symbol beta 
subscript 0. The symbol R subscript i denotes the measurement on individual, i, and T 
subscript i is the true value. 
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Types of measurement error

Types of measurement error (2)
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This graph illustrates additive systematic bias. On the horizontal axis we have the 
identity number of a participant in the study. The T value denotes the participant's true 
usual intake and the R value, his or her reported intake. You can see that everyone 
underreports by the same amount. The quantity beta subscript 0 on the previous slide is 
therefore a negative quantity in this case. 
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
 

Types of measurement error

Types of measurement error (3)

Multiplicative and additive systematic bias

Ri = 0 + 1 Ti

(In addition to additive bias, the true value is 
scaled up or down by factor 1 )
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The next step-up in complexity is that in addition to additive systematic bias we also 
have multiplicative systematic bias. The latter occurs when instead of reporting their 
true usual intake the participants all report a fixed multiple of that intake. Here, the 
multiplying factor is denoted by the symbol beta subscript 1, and is the same for all 
participants. If beta subscript 1 is less than 1 we get underreporting, and if it is greater 
than 1 we get overreporting. Putting the two sorts of systematic bias together gives the 
equation shown here.
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Types of measurement error

Types of measurement error (4)
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This graph illustrates the situation described in the previous slide. In this case there is 
again underreporting but the amount of underreporting gets larger as the true usual 
intake increases. You can see that the underreporting is smaller here, at the lower end 
of the scale, than at the upper end. This occurs when beta subscript 1 is less than 1. 
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

–

Types of measurement error

Types of measurement error (5)

 
Person-specific (random) bias

 Bias that occurs at the individual level - 
it is specific to an individual but can differ 
among individuals

Ri = 0 + 1 Ti + ui

(In addition to additive and multiplicative 
systematic bias, there is a bias ui that varies 
for each individual i)



Slide 20 

We now introduce a further type of error that we call person-specific bias. This is an 
extra additive bias but is different from additive systematic bias in that its value differs 
from one individual to the next. It is denoted by the symbol u subscript i in this 
equation. Conventionally, these person-specific biases average to zero over the persons 
in the population. In other words, the average of the u subscript i values over the 
individuals is zero.  

Note that the terminology can get confusing here. The person-specific bias is indeed a 
bias, but one that occurs at the individual level, but not at the group level (because it 
averages to zero over the individuals). On the other hand, additive systematic bias and 
multiplicative systematic biases are the same for all individuals and therefore occur also 
at the group level. 
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

–

–

 

Types of measurement error

Types of measurement error (6)

Person-specific (random) bias

Ri = 0 + 1 Ti + ui

 The subject-specific bias ui is a random term 

 Its magnitude is quantified by SD(ui ), its 
standard deviation



Slide 21      

Because these person-specific biases vary from individual to individual, we think of them 
as random quantities. Since they are centered on zero, the magnitude of this type of 
bias is quantified by its standard deviation, which tells us how large it can get in either 
the positive or the negative direction. 



The problem of measurement error when examining diet-health relationships22

Types of measurement error

Types of measurement error (7)
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This graph illustrates the combined effect of the three types of error we have now 
described. Unlike the previous two graphs, the pattern in this one is haphazard, due to 
the random nature of the person-specific biases.  
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Types of measurement error

Types of measurement error (8)


 – 

– 

– 

– 

Within-person random error

Variation in reporting by an individual over a 
series of repeat reports

Rij = 0 + 1 Ti + ui + ij

The extra subscript j denotes the sequence 
number in a series of reports

The extra term ij is the within-person error 
that is on average zero

Its magnitude is quantified by SD(ij )
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The final type of measurement error is called within-person random error, and 
represents the variation in reporting by an individual in a series of reports. This is 
related to the concept of the reproducibility of the report. To describe this sort of error 
mathematically, we introduce a new subscript, j, which denotes the sequence number in 
the series of reports. The term R subscript ij now represents the value given by person i 
on his or her jth report. The within-person error term epsilon subscript ij is the one that 
expresses the variation from one report to the next by the same person. None of the 
other terms on the right-hand side of the equation have a subscript j in them and so are 
fixed for that individual. The within-person random error terms average to zero over 
repeats within an individual and, as with person-specific bias, their magnitude is 
expressed by their standard deviation, denoted by SD of epsilon subscript ij. 
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Types of measurement error

Types of measurement error (9)
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And here is the last graph of this type, which shows a similar pattern to the previous 
one, except that there is now even more haphazardness because we have two 
independent random effects working in consort: person-specific bias and within-person 
random error. When we use food frequency questionnaires, or any dietary self-report, 
we encounter all four types of error working together. 
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EVALUATING THE 
MAGNITUDE OF ERROR
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In order to get a handle on how much these errors impact on research results, we have 
to know how large they are, so we next turn to their magnitude.  
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Evaluating the magnitude of error

Evaluating the error (1)





 
How can we study the errors made in dietary 
reporting?

– Validation studies comparing reports with 
“reference” measures of dietary intake

 
Ideal properties of a reference instrument

i. Unbiased

ii. Errors uncorrelated to true intake

iii.Errors uncorrelated with self-report errors



Slide 26 

Ideally, to measure the magnitude of errors we would like to compare reported usual 
intakes with their true values. However, we cannot measure these true values exactly.  

The best we can do is to conduct validation studies in which we compare self-reported 
usual intakes with "reference" measures. The best kind of reference measure to use, 
short of the true value, is one that: first, is unbiased, meaning that if we repeated it 
many times and took an average, it would get very, very close to the individual's true 
value; second, has errors that are unrelated to the true usual intake; and, third, has 
errors that are unrelated to errors in the self-report instrument that we are validating—
the food frequency questionnaire. 
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Evaluating the magnitude of error

Evaluating the error (2)


 – 

– 

•

•

•

– 

Do we have any ideal “reference” measures?

Direct observation (feeding studies)

“Recovery” biomarkers: based on recovery of specific 
biologic products that are directly related to intake 
and are not subject to substantial inter-individual 
differences in metabolism

 Doubly labeled water for energy intake

 24-hour urinary nitrogen for protein intake

 24-hour urinary potassium for potassium intake

“Concentration” biomarkers (e.g., serum lipids) do not 
share these properties  
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The question is whether we have any such reference measures.  

One possibility is where we directly observe what people eat, but this is usually only 
possible within the context of providing the participants with all their food requirements 
in a feeding study. The problem then is that the participants are not in a free-living 
environment and may not self-report their consumption in the usual way.  

A second possibility is to use "recovery" biomarkers, based on recovery of specific 
biologic products that are directly related to intake and are not subject to substantial 
interindividual differences in metabolism. However, there are only three known 
examples of such biomarkers, as shown in this slide: Doubly labeled water for energy 
intake; 24 hour urinary nitrogen for protein intake; and 24 hour urinary potassium for 
potassium intake.  

Other biomarkers, known as concentration biomarkers, do not enjoy the properties of a 
reference measure that you saw on the previous slide. They are useful in other ways but 
not for the validation of questionnaires. I will talk more about these other uses in 
lecture 11 of the series. 
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Evaluating the magnitude of error

Evaluating the error (3)


 – 

– 



– 

– 

– 

– 

– 

OPEN (Observing Protein and Energy Study)

261 men; 223 women

Adult volunteers residing in Maryland, USA

 
Completed: 

24-hour recall x 2

Food frequency questionnaire x 2

24-hour urinary nitrogen x 2

24-hour urinary potassium x 2

Doubly-labeled water x 1 (in 25 persons x 2) 
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The earliest large validation study with recovery biomarkers was the OPEN study, whose 
features are shown in this slide. It included nearly 500 healthy adult volunteers who 
completed a 24 hour recall and a food frequency questionnaire and provided 
assessments using the three recovery biomarkers I just mentioned. Repeat measures of 
each were included. 



The problem of measurement error when examining diet-health relationships29

Evaluating the magnitude of error

Evaluating the error (4)

Results from OPEN – Means

Sex Method Energy
(kcal/d)

Protein
(g/d)

Men

Marker 2842 105.5

FFQ 1961 74.7

24HR 2522 92.2

Marker 2273 77.5

Women FFQ 1524 57.2

24HR 1919 70.9
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Here are some results from OPEN regarding bias in self-reporting at the group level.  

You can see that both for energy and protein intake there is substantial underreporting 
using the food frequency questionnaire. For example, you can see that for energy intake 
in men, the mean report on the food frequency questionnaire was 1961 kcal compared 
to 2842 kcal obtained using the biomarker. There was also some underreporting, but 
not as much, using the 24-hour recall, as seen in the mean value of 2522 kcal, here. The 
amount of underreporting of both energy and protein is about 30 percent on the food 
frequency questionnaire and 10-15 percent on the 24 hour recall. 
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Evaluating the magnitude of error

Evaluating the error? (5)

Results from OPEN – Protein Intake 
(after log transformation)

Sex Method Scaling 
Factor, 

ß1

Person- 
Specific Bias 

(SD)

Within- 
Person 
Error
(SD)

Men
FFQ 0.67 0.36 0.19

24HR 0.70 0.20 0.30

Women
FFQ 0.65 0.33 0.22

24HR 0.60 0.16 0.35
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This slide shows the size of three measurement error parameters that we considered 
earlier. Those shown here are for protein intake.  

The scaling factor is the factor that governs multiplicative systematic bias. The further it 
is from the value 1, the more severe is the bias. The slide shows that for protein intake 
the bias is quite marked for both the food frequency questionnaire and 24 hour recall.  

The next column shows the standard deviation of the person-specific bias. The smaller 
this value, the better. You can see it is much larger for the food frequency questionnaire 
than for the 24 hour recall. 

The final column shows that for within-person random error the pattern is reversed and 
is greater for the 24 hour recall than for the food frequency questionnaire. In other 
words, for the food frequency questionnaire the dominating error is person-specific 
bias, whereas for the 24 hour recall it is within-person random error. Part of the reason 
for the latter is no doubt due to daily variation in diet, since the 24 hour recall is a report 
of a single day. 
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Evaluating the magnitude of error

Evaluating the error? (6)

Results from OPEN – Protein Density
(after log transformation)

Sex Method Scaling 
Factor, 

ß1

Person- 
Specific Bias 

(SD)

Within- 
Person 
Error
(SD)

Men
FFQ 0.46 0.13 0.11

24HR 0.61 0.11 0.24

Women
FFQ 0.37 0.15 0.12

24HR 0.39 0.11 0.26
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This slide shows the same measurement error parameters for protein density; that is, 
protein intake divided by energy intake. We call such a measure an energy-adjusted 
measure of protein intake, and I'll be talking more about energy adjustment later.  

Notice that after this adjustment substantial improvements in measurement error 
parameters are seen, particularly for the food frequency questionnaire. The person-
specific bias is greatly reduced by this adjustment, the standard deviation being reduced 
from about 0.35 to about 0.15, and there is also a considerable reduction in the within-
person error, with a standard deviation of about half that seen for protein. 
Improvements are also seen with the 24 hour recall but are less dramatic. 
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Evaluating the magnitude of error

Evaluating the error? (7)
Summary of results of OPEN and other large validation studies 
(AMPM, NBS)











 
Serious under-reporting 
Energy: FFQ by 30% and 24HR by 10%

 
Food frequency questionnaire (FFQ) 
Large systematic error, large person-specific bias, small within- 
person random error

 
The biases and random error can be reduced by energy adjustment 

 
24-hour recall (24HR) 
Smaller systematic error, large within-person random error, smaller 
person-specific bias

 
The within-person random error of the 24HR is largely day-to-day 
variation and can be reduced by using several repeats
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So here is a summary of the results from the OPEN study.
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MODELS FOR ESTIMATING 
DISEASE RISK
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Our ultimate aim in this lecture is to describe the impact of dietary measurement error 
on the results of research evaluating potential links between diet and health. A further 
necessary step before we do that is to review statistical models used in nutritional 
epidemiology for estimating disease risk. 
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Models for estimating disease risk

Estimating disease risk (1)





 
Before we study the impact of measurement 
error on studying diet-health relationships, we 
need to review measures and statistical models 
for disease risk 

 
The two main measures of disease risk are: 

– 

– 

Relative risk

Odds ratio
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The two main measures of disease risk are the relative risk and the odds ratio. 
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

Models for estimating disease risk

Estimating disease risk (2)

 
When comparing two groups, exposed and 
unexposed:

Prob (disease in exposed)Relative risk =
Prob (disease in unexposed)

Prob (disease)Odds (disease) =  
1 - Prob(disease)

Odds (disease in exposed)Odds ratio =  
Odds (disease in unexposed)
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When comparing two groups, one exposed to a given risk factor and one unexposed, the 
relative risk of disease associated with the exposure is the probability of developing the 
disease in the exposed group divided by the probability in the unexposed group.  

Sometimes it is more convenient to use the odds of disease rather than the probability 
of disease. The odds is a measure that is commonly used in betting. The odds of disease 
is defined as the ratio of the probability of developing disease to the probability of not 
developing disease.  

Then, the odds ratio associated with exposure is the odds of disease in the exposed 
group divided by the odds of disease in the unexposed group.  

For rare diseases, the relative risk and the odds ratio are almost equal to each other, 
simply because the odds is almost equal to the probability of disease when the disease 
is rare.   

Because in epidemiology we usually estimate relative risks and odds ratios via 
regression models, we now need to consider such models. 
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

Models for estimating disease risk

Estimating disease risk (3)

 
Elements of a nutrition regression model

1. A health outcome variable (Y)

2. A set of explanatory variables, (T1 ,T2 , Z1 …,Zp ) 
The T–variables are dietary exposures, and the 
Z-variables are other exposures, confounders, 
effect modifiers or intermediate variables

3. An equation linking the outcome to the 
explanatory variables
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The elements of a regression model in nutritional epidemiology are: first, a health 
outcome variable, denoted by the symbol Y, which is often a binary variable indicating 
the presence or absence of disease; second, a set of explanatory variables that are 
dietary variables denoted by T subscript 1, T subscript 2, etc.; and other variables 
denoted by Z with a subscript. These Z-variables could be other nondietary exposures or 
confounders or effect modifiers or mediators.  

Note that we use T for the dietary exposures to link with our earlier use of this symbol. 
They represent the true usual intakes of various dietary components.  

The third element is an equation that links the health outcome to the explanatory 
variables—we call this the regression equation. 
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Models for estimating disease risk

Estimating disease risk (4)

For example, logistic regression:

    0 T1 1 T2 2 Z1 1 Zp plog{Odds(Y = 1)} = + T + T + Z +... + Z







 
Where: 
Y is a binary variable; 
Y=1 denotes disease (“case”) 
Y=0 denotes no disease (“healthy”)

 
's are the regression parameters and represent log 
odds ratios

 
Each 

 
represents the increase in the log odds of 

disease associated with increasing the corresponding 
variable by 1 unit while keeping the other variables fixed.
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As an example, here is a logistic regression model that relates the odds of disease to 
dietary intakes and other explanatory variables. The Y is a binary variable indicating 
presence of disease when Y=1, or absence of disease when Y=0. It has been found very 
convenient to express disease risk (on the left-hand side of the equation) by the 
logarithm of the odds. In that case, the alpha-terms on the right-hand side, which are 
known as the regression coefficients, actually represent the logarithms of odds ratios. In 
fact, each alpha represents the increase in the log odds of disease associated with 
increasing its corresponding variable by 1 unit, while keeping the other variables fixed. 
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Models for estimating disease risk

Estimating disease risk (5)

Estimating an odds ratio: binary exposure 
Israeli National Ovarian Cancer Case-Control Study







 
Oral Contraceptive use (0=<6m use, 1=6m+ use) 
889 cases; 1747 controls 

 0 1{Odds(Y = 1)}log = + OC

 
Output from logistic regression program 
Coefficients: 

Value Std. Error p value 
(Intercept) -0.65 0.046 <0.00010 

ocon1 -0.13 0.100 0.19

 
Odds ratio estimate for OC = exp(1 ) = exp(-0.13) = 0.87 
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Here is a non-nutritional example of using logistic regression to estimate an odds ratio. 
The data are based on those from a study of risk factors for ovarian cancer conducted in 
Israel in the 1990s. The exposure of interest here is the use of oral contraceptives, which 
has been dichotomized as less than or more than six months of use. You can see that in 
the second line of the table in bold, the estimated coefficient for oral contraceptive use 
is -0.13. This is the estimated log odds ratio. To find the odds ratio we have only to take 
the exponent, which is equal to 0.87, a value less than 1, suggesting possible protection 
from the disease. 
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Models for estimating disease risk

Estimating disease risk (6)
Estimating an odds ratio: continuous exposure 

Animal Fat intake (kcal/d) from a FFQ

 0 1log{Odds(Y = 1)} = + afatcal

Output from logistic regression program 
Value Std. Error p value 

(Intercept) -1.18 0.10 <0.0001 
afatcal 0.0017 0.00030 <0.0001





 
Odds ratio estimate for increase in animal fat intake of 1kcal/d = 
exp(1 ) = exp(0.0017) = 1.0017

 
Odds ratio estimate for increase in animal fat of 100kcal/d = 
exp(1001 ) = exp(1000.0017) = 1.18
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Here, now, is a nutritional example from the same study looking at the association of 
disease with intake of calories of animal fat reported on a food frequency questionnaire.  

The estimated regression coefficient for animal fat intake of 0.0017 is very small, but 
highly statistically significant.  

The odds ratio is again obtained by taking the exponent of the coefficient, and equals 
1.0017, but this very small increase in risk is associated with a very small increase in 
animal fat intake, only 1 kcal. It would be more realistic to consider an increase of 50kcal 
or 100kcal.  

The last line in the slide shows the calculation of the odds ratio for an increase of 100 
kcal in animal fat intake, leading to an estimated odds ratio of 1.18. 
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Models for estimating disease risk

Estimating disease risk (7)

Energy adjustment



–



 
Practical question:

 A study has been conducted with a FFQ as 
the main dietary instrument

 
When evaluating an association between a 
FFQ-reported nutrient intake and the health 
outcome should one adjust for FFQ-reported 
total energy?
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In the previous slide you saw a model with a single nutrient as the explanatory variable. 
An important issue in nutritional epidemiology concerns the question of whether to 
adjust for energy intake. If a food frequency questionnaire has been used for the study, 
the practical question becomes: If you want to study an association between a given 
FFQ-reported nutrient and a health outcome, should you adjust for FFQ-reported 
energy? 



The problem of measurement error when examining diet-health relationships41







 

Models for estimating disease risk

Estimating disease risk (8)

Possible reasons for energy adjustment 
(see Willett, Howe and Kushi, 1997)

Energy is a confounder

 
The energy-adjusted relative risk is more 
relevant to public health interests

 
The adjustment increases the precision of 
the relative risk estimate
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In a paper written in 1997, Willet, Howe, and Kushi argued that one should adjust for 
energy intake. They advanced several reasons, but the one that seems most persuasive 
is that the energy adjustment increases the precision of the relative risk estimate. This is 
very closely connected to the results of the OPEN study, where we saw that energy 
adjustment appears to improve the measurement error profile of the food frequency 
questionnaire. 
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

Models for estimating disease risk

Estimating disease risk (9)

Energy adjustment models

 
There are several different methods for energy 
adjustment – we will look at two:

i. Standard model

ii. Density model
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There are several ways to perform energy adjustment. We will look at two, one known 
as the standard model; the other, as the density model. 
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Models for estimating disease risk

Estimating disease risk (10)

Energy adjustment models







 
Standard model: 
Add total energy intake as a second explanatory variable, 
for example: 

  0 1 2log{Odds(Y = 1)} = + afatcal + energy

Meaning of the coefficient 1 changes: 
 The log odds ratio associated with increasing animal fat 

intake by 1 kcal while keeping total energy intake fixed 

 
which means: 
The log odds ratio associated with substituting 1 kcal of 
animal fat for 1 kcal of other nutrients                        
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In the standard model, we simply include FFQ-reported total energy intake as second 
explanatory variable, as shown in the regression equation here.  

When we do this, it is important to realize that we change the meaning of the 
coefficient for animal fat intake. It is now the log odds ratio associated with increasing 
animal fat by 1 kcal while at the same time keeping total energy fixed. The only way we 
can increase animal fat intake by 1 kcal while keeping total energy intake fixed is by 
substituting the animal fat for 1 kcal of other nutrients. So the association is now with 
the substitution of animal fat for something else in the diet rather than with the 
addition of further calories of animal fat to the diet. 
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

  

Models for estimating disease risk

Estimating disease risk (11)

Energy adjustment: Standard model

  0 1 2log{Odds(Y = 1)} = + afatcal + energy

Value Std. Error p value 
(Intercept) -1.39 0.13 <0.0001 

afatcal 0.00093 0.00042 0.027 
energy 0.00025 0.000098 0.009

Odds ratio for 100kcal increase = exp(0.00093 x 100) = 1.10

 
Remember that this association is with substituting 100kcal 
of animal fat for 100kcal of other food sources
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Here is an example of using the standard model in the Israeli Ovarian Cancer Study.  

Notice that the coefficient of the animal fat variable is reduced after inclusion of the 
total energy variable to about half of its previous value, 0.0017, and while the 
association is still statistically significant, the level of significance is less strong, 0.027. As 
before, it is possible to estimate an odds ratio associated with increasing animal fat by 
100 kcal, but one needs to remember that this is an association with substituting that 
amount of animal fat for other nutrients. 
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




 

Models for estimating disease risk

Estimating disease risk (12)

Energy adjustment models

 
Density model: 
Nutrient density = 100 x (nutrient intake in kcal / total energy 
intake in kcal)%

 
Express the nutrient as a nutrient density and add total 
energy intake as a second explanatory variable. 

For example:

  0 1 2log{Odds(Y = 1)} = + afatdens + energy

Meaning of the coefficient 1 : 
The log odds ratio associated with increasing animal fat 
density by 1% while keeping total energy intake fixed           
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A second way of performing energy adjustment is through the density model. A nutrient 
density is the percentage of total energy intake provided by that nutrient. In the density 
model, we express the nutrient intake of interest as a nutrient density and we also add 
total energy, a second explanatory variable, as shown in the regression equation here. 
Once again, we need to bear in mind that the coefficient of the nutrient density is a log 
odds ratio associated with a change in the composition of the diet, not in the total 
amount consumed. 
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Models for estimating disease risk

Estimating disease risk (13)

Energy adjustment: Density model

  0 1 2log{Odds(Y = 1)} = + afatdens + energy

Value Std. Error p value 
(Intercept) -1.66 0.20 <0.0001 
afatdens 0.01560 0.00760 0.041 

energy 0.00041 0.00007 <0.0001



  
Odds ratio for 5% increase = exp(0.0156 x 5) = 1.08

 
Remember that this association is with increasing animal fat 
density by 5% while keeping energy intake fixed
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And here is an example of using the density model in the Israeli Ovarian Cancer study.  

Notice that the level of significance of the coefficient for animal fat density, 0.041, is 
similar to that of the animal fat intake variable in the standard model. It is usually the 
case that the standard and density models yield similar levels of significance for the 
nutrient of interest. 
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QUALITATIVE IMPACT OF 
MEASUREMENT ERROR
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Of course, there is a whole lot more one could say about the use of regression models in 
nutritional epidemiology, but I hope that what we have just covered will be sufficient for 
us now to address the question of the impact of dietary measurement error on the 
estimation of odds ratios or relative risks. In this next section I'll talk about the 
qualitative impact, and then later we'll consider its quantitative impact.
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





Qualitative impact

Qualitative impact of error (1)

Additive systematic bias

 
Suppose we have an instrument with additive systematic bias 
but no subject-specific bias and no random error.

Ri = 0 + Ti

 
Then: 
a. Log odds ratio estimates are unchanged
b. Scatter about the regression line is unchanged
c. Significance tests are unaffected
d. Study power is unaffected

 
Additive systematic bias is not a problem for detecting a 
relationship! 
But translation to public health message is affected                  
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Before I talk about impact of measurement error on disease risk estimates, I have to 
explain an important assumption that I am going to make throughout the rest of the 
lecture. I will assume that the measurement error is the same for those with and those 
without disease. We refer to such error as nondifferential measurement error. This 
assumption is usually a very reasonable one for cohort studies where the dietary intake 
is reported usually many years before any disease is diagnosed. However, it is 
sometimes questionable in case-control studies where dietary reporting may be 
affected by disease status. For this lecture I am assuming that measurement error is 
nondifferential. 

So, how do the different types of measurement error that we talked about earlier 
impact disease risk estimates? We'll start with additive systematic bias, and this slide 
reminds you what that is. This type of error actually has no impact on estimation of odds 
ratios or relative risks. The log odds ratio estimates are unchanged. The scatter about 
the regression line is unchanged. Significance tests are unaffected, as is statistical power 
of the study. This means that additive systematic bias is not a problem for detecting 
diet-health relationships, although it's important to remember that the translation of 
research results into public health recommendations would be affected. I'll explain that 
last remark in a bit more detail very shortly. 
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Qualitative impact

Qualitative impact of error (2)
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In this slide I have tried to give you an intuition of why there is no impact on odds ratio 
estimates. The vertical axis of the graph represents disease risk on the log odds scale 
and the horizontal axis, usual dietary intake. The odds ratio is here represented by the 
slope of the straight line. Reported values, R, are displaced from the true values, T, 
along the x-axis by a constant amount. The slope through the R’s is therefore exactly the 
same as the slope though the T’s. Also, the scatter about the lines is the same for both 
the R’s and the T’s, indicating that the same statistical power for detecting an 
association will hold.  

This graph also illustrates the point about the public health message. Suppose you 
wanted to achieve a log odds of disease of -4.0 or less in your population. Then 
according to reported intake values you would recommend a diet of 20 g/d of fat or less, 
whereas in truth eating 25 g/d or less would achieve the goal. It would therefore be 
necessary to adjust the public health message and correct for the additive systematic 
bias.  
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


 – 

– 
– 
– 



 

Qualitative impact

Qualitative impact of error (3)

Additive and multiplicative systematic bias

 
Suppose we have an instrument with additive and 
multiplicative systematic bias but no person-specific bias and 
no random error

Ri = 0 + 1  Ti

Then: 
Log odds ratio estimates are scaled by 1/1
Scatter about the regression line is unchanged
Significance tests are unaffected
Study power is unaffected

 
Systematic bias is not the major problem for detecting a 
relationship!
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When we have, in addition, multiplicative systematic bias, the picture changes slightly. 
Now the log odds ratio estimates become biased and are scaled by the factor 1 divided 
by beta subscript 1. Remember that the results of the OPEN study showed that, 
generally, beta subscript 1 is less than 1, so the log odds ratio estimates actually 
increase as a result of this multiplicative systematic bias. However, significance tests and 
statistical power to detect an association are not affected by the multiplicative bias. 
Because of this, and in view of what I will show you very soon, we have to conclude that 
systematic bias is not the major problem in detecting associations of diet with health 
outcomes. 
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Qualitative impact

Qualitative impact of error (4)
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This slide shows the increase in slope resulting from multiplicative systematic bias that I 
just mentioned. But you can also see that the scatter about the regression lines through 
the R's is not increased and, therefore, statistical power is unaffected. 
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Qualitative impact

Qualitative impact of error (5)

Person-specific bias and within-person random error







 
Suppose we have an instrument with systematic bias and  
also person-specific bias and within-person random error

Rij = 0 + 1 Ti + ui + ij

 
Then: 
a) Log odds ratio estimates are factored down 

(attenuated)
b) Scatter about the regression line is increased
c) Significance tests are less powerful but still valid
d) Study power is decreased

 
Person-specific bias and within-person random error are a 
major problem for detecting a relationship!



Slide 52 

We now consider what happens if, as in the case of dietary self-reporting, you have 
systematic bias, person-specific bias, and within-person random error. The impact is, 
firstly, that log odds ratios become factored downwards; that is, towards the null value. 
We call this attenuation. Note that this occurs even though the multiplicative systematic 
bias tends to increase the log odds ratio. What happens is that the person-specific bias 
and within-person error both decrease the log odds ratio and, together, they overcome 
and dominate the effect of the multiplicative bias. In addition, the scatter about the 
regression line now increases, and although significance tests are still valid, they are less 
powerful. Because of the person-specific bias and within-person error, we lose power to 
detect the association. Thus, the random errors that are person-specific bias and within-
person error are a major problem for detecting a diet-health relationship. 
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Qualitative impact

Qualitative impact of error (6)
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This slide shows the attenuation of the slope caused by the random errors, and you can 
also see the much greater scatter of points about the line that signifies the loss of 
power.  
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Qualitative impact

Qualitative impact of error (7)

Summary









 
When a single dietary exposure measured with error is 
included in a disease outcome regression model:

 
Then: 
a) Log odds ratio estimates are factored down (attenuated)
b) Study power is decreased
c) Significance tests are less powerful but still valid

 
These conclusions seems to hold also for several dietary 
exposures entered together in the same model 
(e.g., energy-adjustment models) – see later details

 
We now quantify the seriousness of these problems



Slide 54 

So here is a summary of qualitative impact of dietary measurement error on results of 
research exploring diet-health associations. Note, first, that so far we have talking about 
the effects of measurement error when a single dietary intake measured with 
nondifferential error is entered as an explanatory variable into a regression model. In 
that case, log odds ratio estimates are attenuated, and although significance tests are 
still valid, they are less powerful. It seems, on the best evidence we have to date, that 
these same conclusions hold in the case where several dietary intakes all measured with 
error are entered into the regression model. I'll enlarge on that issue towards the end of 
the lecture.  
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QUANTITATIVE IMPACT OF 
MEASUREMENT ERROR: 
UNIVARIATE MODELS
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We are now going to consider the quantitative impact for simple models where there is 
a single dietary intake as the explanatory variable. 
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Quantitative impact: univariate models

Quantitative impact of error (1)


 

We will now quantify the extent of the two main 
problems:

a) Log odds ratio estimates are attenuated

b) Study power is decreased
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As we have just learned, the two main problems caused by dietary measurement error 
are the attenuation of odds ratio estimates and the decrease of study power. We will 
now see the size of these effects.  
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Quantitative impact: univariate models

Quantitative impact of error (2)

Log odds ratio attenuation for 
a single continuous dietary intake variable







– 

– 



 

 
Assume we have systematic error, subject-specific bias and 
random error.

 
Expected log odds ratio estimate =  true value,

 where 

 = attenuation factor 
= slope of regression of T (truth) on R (report) 

 is nearly always <1 and usually a lot less!
 

 
When the log odds ratio is attenuated, the odds ratio moves 
towards 1.0
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Using statistical theory, it's possible to show that, under the type of measurement error 
in our instrument that we have been considering, the log odds ratio estimate that we 
expect to obtain is a factor lambda times the true value. For dietary data this factor 
lambda is nearly always less than 1. It has therefore become known as the attenuation 
factor (although some people call it the regression dilution ratio). The closer it is to zero, 
the worse the attenuation and, unfortunately, it is often a lot less than 1. Naturally, 
because the log odds ratio estimate is attenuated towards zero, the odds ratio estimate 
is attenuated towards 1.  

It turns out that lambda is actually the slope of the regression of true usual intake, T, on 
reported intake, R. This is a very useful fact because it gives us a way of estimating the 
attenuation factor from validation studies such as OPEN, and we do this by regressing 
the recovery biomarker on the self-reported intake and estimating the slope. 
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Quantitative impact: univariate models

Quantitative impact of error (3)

Log odds ratio attenuation for 
a single continuous dietary intake


 – 

OPEN: Attenuation Factors for FFQ and 24HR (Men)

(Obtained by regressing recovery biomarker on self-report) 

FFQ 24HR 

Energy 0.08 0.18

Protein 0.16 0.20

Protein Density 0.40 0.23
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This slide shows the estimates of the attenuation factors for men, obtained from the 
OPEN study. You can see that for the food frequency questionnaire, the estimates for 
energy and protein are extremely low, but that the attenuation factor for protein 
density is considerably higher. The situation is not much better for a single 24 hour 
recall, and in this case, energy adjustment does not improve matters greatly. 
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Quantitative impact: univariate models

Quantitative impact of error (4)

Implications of these results





–

–

–

 
Suppose the attenuation factor  is 0.16 
(as for protein)  

Suppose the true odds ratio between the 90th and 10th 
 percentiles of true intake is 2.5 

(i.e., substantial)

 log OR = log(2.5) = 0.92

 Expected estimated log OR = 0.92 x 0.16 = 0.147

 Expected estimated OR = exp(0.147) = 1.16
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The implications of such low attenuation factors can be seen in this slide. Suppose that, 
as seen for protein in the previous slide, the attenuation factor is 0.16. Suppose, now, 
that the true odds ratio is 2.5. The corresponding log odds ratio is 0.92. The 
measurement error causes this log odds ratio to be estimated on average as 0.92 times 
0.16, which is 0.147, and this translates into an odds ratio of 1.16.  
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




 

Quantitative impact: univariate models

Quantitative impact of error (5)

Implications of these results (cont’d)

 
Almost impossible to detect an OR of 1.16 in a case- 
control or cohort study

 
Reasons: 

a) Enormous  sample sizes required to obtain 
statistical significance (see later)

b) Cannot eliminate all confounding

The limit of detection for an OR is probably around 1.25



Slide 60 

Such attenuation causes serious problems in nutritional epidemiology. It is almost 
impossible to detect an odds ratio of 1.16 in an observational study. Firstly, one requires 
enormous sample sizes to obtain statistical significance, and even if such significance is 
obtained one cannot rule out the possibility that the result is due to unmeasured 
confounders. Because of potential confounding, most epidemiologists consider that the 
limit of reliable detection of an odds ratio in observational studies is around 1.25, if not 
higher. 



The problem of measurement error when examining diet-health relationships61

Quantitative impact: univariate models

Quantitative impact of error (6)

Implications of these results (cont’d)





– 

– 

– 



 
Fortunately, after energy adjustment, attenuation factors 
with an FFQ are larger (e.g., 0.40 for protein density)

 
Suppose the true odds ratio between the 90th and 10th 
percentiles is 2.5 (i.e., substantial)

log OR = log(2.5) = 0.92

Expected estimated log OR = 0.92 x 0.40 = 0.368

Expected estimated OR = exp(0.368) = 1.44

 
Such an odds ratio is more possible to detect, although 
still difficult!
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The picture is not totally bleak, since after energy adjustment for the food frequency 
questionnaire, the attenuation factor is increased. For protein density in a previous 
slide, it was 0.40. Going through the same calculation as previously, we see that a true 
odds ratio of 2.5 is estimated on average as 1.44, which is more possible to detect, 
although still hard. 
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Quantitative impact: univariate models

Quantitative impact of error (7)

Log odds ratio attenuation for 
a single categorized dietary intake









 
Assume we categorize our intake into quantiles 
(e.g., tertiles, quartiles or quintiles)

 
The log odds ratio is still attenuated but by a different 
amount: 

 
Expected log odds ratio estimate = 

 
true value, 

where 
= correlation between R (report) and T (truth)

 
In other words, for analysis by quantiles, log odds ratios 
are attenuated by , instead of 
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Up to now, all the statistical analyses we have considered have been conducted on 
dietary intakes expressed as continuous variables. It is quite common practice to 
categorize dietary intakes into quantiles, such as tertiles, quartiles, or quintiles, and to 
estimate the odds ratio of persons in the highest quantile to those in the lowest. Such 
an odds ratio is also attenuated, but now the attenuation is governed by a different 
multiplicative factor, denoted by rho, which is the correlation between the reported 
intake and the true intake. 
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Quantitative impact: univariate models

Quantitative impact of error (8)

Log odds ratio attenuation for 
a single categorized dietary intake

OPEN: Correlations with True Usual Intake for 
FFQ and 24HR (Men)

FFQ 24HR 

Energy 0.20 0.34

Protein 0.32 0.38

Protein Density 0.43 0.38
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This slide shows the values of this correlation coefficient estimated from the OPEN 
study. Once again, you see low values. For the FFQ, the value increases after energy 
adjustment—that is, for protein density—to values similar to those seen previously for 
the attenuation factor. 
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Quantitative impact: univariate models

Quantitative impact of error (9)

Log odds ratio attenuation for categorized variables





 
Implications of these results are similar to those 
stated earlier

 
After energy adjustment, the estimated log odds 
ratios will be greatly attenuated by a factor of about 
0.4 for protein density
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So the implications for analysis with categorized variables are very similar to those for 
continuous variables. 
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Quantitative impact: univariate models

Quantitative impact of error (10)

Decrease in study power





 
Assume we have systematic bias, subject-specific 
bias and within-person random error

Effective sample size = Actual sample size x 2

Where: 
  = correlation of R (report) with T (truth)
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The second problem caused by measurement error is the reduction of statistical power 
to detect a diet-health association. Here also, we can quantify the effect using statistical 
theory. When we use a self-report instrument, R, that has correlation coefficient rho 
with the true usual intake, T, then we effectively reduce our effective sample size by a 
multiplicative factor equal to rho superscript 2. In other words, if our study has n 
participants, it has the same power as a study with n times rho superscript 2 participants 
who report their exact value of usual intake, T.  
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Quantitative impact: univariate models

Quantitative impact of error (11)

Decrease in study power

OPEN: Correlations with ‘truth’ for FFQ and 24HR (Men)

FFQ 24HR 
Energy 0.20 0.34
Protein 0.32 0.38

Protein Density 0.43 0.38





 
Example: Protein Density 
FFQ: Effective sample size = 0.432 x actual sample size 

= 0.18 x actual sample size

 
We effectively lose 82% of our sample size! 
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Here is the table of correlation coefficients between self-report and true usual intake, 
estimated from the OPEN data, which you saw a few minutes ago. Taking the example 
of protein density for the food frequency questionnaire, you can see that use of this 
instrument leads to an effective sample of 0.43 squared, or 0.18 times the actual sample 
size. In other words, use of this instrument, instead of obtaining an exact measure of 
intake (if that were possible) causes us to lose effectively 82 percent of our sample.
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Quantitative impact: univariate models

Quantitative impact of error (12)

Decrease in study power





 
Suppose that we had calculated a sample size 
of 50,000 for a cohort study that would give 90% 
power for detecting an association the 5% 
significance level, assuming that we could 
measure dietary intake exactly

 
Then, because of the measurement error we 
would need 50,000/2 = 50,000/0.4322 = 
270,000 to preserve the power of 90%
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Another way of looking at this problem is to suppose that we had calculated that we 
needed a sample size of 50,000 for a cohort study investigating protein density to obtain 
90 percent power for detecting an association with disease at the 5 percent level, 
assuming we could measure dietary intake exactly. Then, because of measurement 
error, we would actually need 50,000 divided by rho-squared; that is, about 270,000 
individuals. The measurement error causes a more than fivefold increase in sample size 
requirements.  
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

– 

– 

Quantitative impact: univariate models

Quantitative impact of error (13)

Decrease in study power

 
If we proceeded with the study with sample size 
50,000 then the statistical power would be 
decreased by measurement error from 90% to 28%

The formula is given by: 

Power = -1(3.24-1.96)

Where the symbol -1 denotes the inverse of the 
standard normal cumulative distribution function
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And if we had forgotten to factor in the measurement error in our sample size 
calculations and we opted for a sample size of 50,000, then instead of obtaining 90 
percent power to detect the association, we would have a power of only 28 percent. In 
other words, we would have a rather small chance of detecting the association. For 
those interested in performing such calculations, the formula is provided here. 
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QUANTITATIVE IMPACT OF 
MEASUREMENT ERROR: MODELS 
WITH MULTIVARIATE EXPOSURE
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In the previous section we were considering the simple situation where there is only one 
dietary variable in the model. However, as we emphasized earlier, it is often 
recommended to include at least two dietary variables in the model—the nutrient of 
interest and total energy intake. So in this last section we will consider in more detail if 
the previous conclusions change when there is more than one dietary variable in the 
model. 
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



Quantitative impact: multivariate models

Quantitative impact: multivariate exposures (1)

Two or more dietary variables in the disease regression 
model

Typical example: Standard energy-adjustment model  
 log{Odds(Y=1)} = 0 + 1 afatcal + 2 energy

 
The effects of measurement error in these models is 
in theory less straightforward:

i. Estimated log odds may be biased but not 
attenuated (i.e., inflated)

ii. Statistical tests may not be valid
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Consider a standard model that is one with both a nutrient—animal fat, say—and also 
energy, as explanatory variables. Introduction of another dietary variable into the model 
raises potentially new problems. First, the estimated log odds ratio could be biased in 
either direction, it could be attenuated as before, or, alternatively, it might be inflated. 
Related to this, the usual statistical test of significance for the odds ratio may not be 
valid. 
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Quantitative impact: multivariate models

Quantitative impact: multivariate exposures (2)



–

–

–

 
These problems arise from residual 
confounding:

 One error-prone exposure and one exactly 
measured exposure in the same model

 If the two (true) exposures are correlated, 
then the exactly measured one will adopt part 
of the effect of the error-prone exposure

 When both are measured with error, they will 
each adopt different fractions of the other’s 
effect! 
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These new problems arise from a concept well-known to epidemiologists in other 
contexts that is called residual confounding. Suppose in a regression model there are 
two exposures; one is measured with error and one is measured exactly. If the two true 
exposures are correlated, then the exactly measured exposure will adopt a fraction of 
the effect of the error-prone exposure, and its own estimated effect will then become 
distorted. In our case, when both dietary exposures are measured with error, then each 
adopts a different fraction of the other's effect, with these fractions depending upon the 
strength of the correlation between the variables, their respective variances, and the 
correlation and variances of the errors. 
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Quantitative impact: multivariate models

Quantitative impact: multivariate exposures (3)







 
Suppose we have two nutrient intakes. 
There exists an “attenuation-contamination” matrix, as 
follows: 

12

21


22

 
If the true log odds ratios for the two nutrients are 1 and 
2 , then the estimated ones are expected to be: 
11  1 + 12  2 and  22  2 + 21  1

 
The magnitudes of 12 and 21 tell us how serious is the 
residual confounding. 
We call them contamination factors
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Mathematically, the problem is captured by a matrix of four values shown here that we 
call the attenuation-contamination matrix. If the true log odds ratio for the first dietary 
intake is alpha-1, then we expect it to be estimated, on average, not as alpha-1 but as 
lambda-11 times alpha 1 plus lamda-12 times alpha 2. There is a similar expression for 
the estimate of the log odds ratio for the second dietary variable. 

Notice that the first part of the expression lambda-11 times alpha-1 is exactly the same 
as the attenuation expression that we saw for a single variable. The second part of the 
expression, lambda-12 times alpha-2, is the new part—the residual confounding 
introduced by the entry of a second dietary variable into the regression. For this reason, 
the off-diagonal terms of the matrix lamda-12 and lamda-21 tell us how serious the 
residual confounding is; we call them contamination factors. 
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Quantitative impact: multivariate models

Quantitative impact: multivariate exposures (4)

 I

 





 
f 12 and 21 are small, then the only bias in the 
estimated log odds ratios comes essentially from 
attenuation, then:

a) The estimated log odds ratio is attenuated

b) The significance test is valid

 
So we need to know for dietary data, how large 
are the contamination factors

 
We can estimate them from the OPEN study
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If these contamination factors are very small, then the only effective bias in the 
estimated log odds ratios is essentially one of attenuation. The situation reverts to the 
one we had earlier with a single error-prone variable in the regression model. The log 
odds ratio is attenuated and the significance test is valid, although less powerful.  

So we need to know the values of contamination factors to understand whether we 
need to be concerned about residual confounding. Fortunately, we can estimate some 
of them from the OPEN study. 
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Quantitative impact: multivariate models

Quantitative impact: multivariate exposures (5)

OPEN – Estimated Contamination Factors
(Freedman, Schatzkin, Midthune, Kipnis, J Nat Cancer Inst 2011)

Dietary 
Component Gender Protein Density Potassium 

Density Energy

Energy Men -0.01 (0.03) 0.13 (0.05) -

Energy Women 0.03 (0.05) 0.10 (0.06) -

Protein Density Men - -0.01 (0.09) 0.08 (0.05)

Protein Women - 0.00 (0.10) 0.06 (0.05)

Potass. Density Men -0.05 (0.06) - 0.04 (0.04)

Potassium Women 0.00 (0.07) - -0.04 (0.05)

Total Fat 
Density Men -0.03 (0.07) 0.00 (0.08) 0.05 (0.05)

Total Fat Women -0.02 (0.08) -0.08 (0.10) -0.07 (0.05)

Sat. Fat Density Men -0.03 (0.05) -0.04 (0.07) 0.10 (0.04)

Saturated Fat Women -0.01 (0.06) -0.07 (0.08) -0.02 (0.04)
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In this slide we see the estimates for a selected set of nutrients. Because of the 
restricted set of recovery biomarkers, we can investigate only pairs of nutrients, of 
which at least one is energy, protein, or potassium, or their densities. You can see from 
this table that the values for the contamination factors are all small, the largest amongst 
this set of 24 values being 0.13. 
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Quantitative impact: multivariate models

Quantitative impact: multivariate exposures (6)

OPEN: Contamination factors 



– 

– 

 
Contamination factors generally appear small, 
meaning that residual confounding does not 
appear to be a serious problem

However, note that OPEN and other recovery 
biomarker validation studies examine only 
energy, protein and potassium

Similar findings for other nutrients cannot be 
guaranteed
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The conclusion, therefore, based on current evidence is that residual confounding is not 
a major source of bias in odds ratio estimates. However, the evidence is restricted by 
the limited number of recovery biomarkers available, and we cannot be totally sure that 
it applies to pairs of nutrients outside our restricted sets. 



The problem of measurement error when examining diet-health relationships76

SUMMARY
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[No notes.] 
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Summary

Summary

 

 

 

1. Errors in self-reported dietary intake have a complex 
structure including systematic biases, person-specific 
biases and within-person random error

2. The person-specific biases and within-person random 
error have a profound impact on the estimation of 
disease risk parameters such as the log odds ratio. 
Estimates of these are severely attenuated

3. For a FFQ, these effects can be partially mitigated by 
energy-adjustment

4. The same biases and random errors also cause loss of 
statistical power for detecting diet-health relationships



Slide 77 

[No notes.] 
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Summary

What’s coming next?





 
In the next lecture, we will study how we can 
correct the attenuation in the estimated disease 
risk parameter

 
This will require us to learn about calibration 
studies and also a neat statistical method known 
as regression calibration
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QUESTIONS & ANSWERS
Moderator: Sharon Kirkpatrick

Please submit questions 
using the Chat function
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Thank you Dr. Freedman. We’ll now move on to the question and answer period of the 
webinar. 



 

 

 

Measurement Error Webinar 6 Q&A 

Question: Could you please comment on whether the concepts that you’ve 
discussed apply when diet is the outcome rather than the exposure? 

The answer is that there are effects and impacts of dietary measurement 
error when the dietary variable is the outcome and not the exposure 
variable, but they are different. Essentially what happens is that the 
regression coefficients are still biased but the bias is only impacted by the 
multiplicative, systematic bias parameter β1 and the estimated regression 
coefficient is equal to β1 times the true value. So they are attenuated as 
much as β1 is, but they’re not impacted by person-specific biases or by 
within-person random error. The person-specific biases and within-person 
random error do, however, increase the variance of the residual in the 
regression model and, therefore, do reduce power to detect the effect. (L. 
Freedman) 

Will the series cover methods related to diet and health relationships 
using both FFQ data and 24 hour recall data? 

The series will indeed look at 24 hour recall data. There is a specific 
problem with 24 hour recall data in that, often, with nutrients or foods 
that are not regularly consumed, they lead to data which have large 
numbers of zeros in them. And I believe that Dr. Kipnis will cover that 
particular issue and that problem later on in this series.  
(L. Freedman) 

Is there a preferred method of energy adjustment or does it depend on 
the situation? 

It does very much depend on the situation. One particular aspect that 
comes up in the choice of which method to use is what sort of variable you 
are using as your dietary variable—whether you are using a continuous 
variable or whether you’re using a categorized variable. For example, if 
you are using a continuous variable, it actually doesn’t make any 
difference at all whether you use the standard method or another method 
which I haven’t described, which is called the residual method. They lead 
to exactly the same answers. But if you categorize your variables, it’s been 
shown that the residual method is better than the standard method and 
leads to less-biased results. So it does very much depend on exactly which 
model you’re using to analyze the data in terms of your variables, which 
type of variable you’re using, and other aspects as well. And there’s also a 
certain subjective element. Some people really like using nutrient 



 

 

 

 

densities—I’m one of them—and prefer to use the density method 
because of that. They find it easier to explain the results that way. So there 
is a certain amount of personal choice involved as well. (L. Freedman) 

How do the results of OPEN compare to those of other biomarker 
studies? 

We’re actually conducting, at the moment, a pooling study, which includes 
OPEN together with three other large validation studies with recovery 
biomarkers which have been carried out subsequently. Some of them have 
been already reported; one is the AMPM study of the USDA, and the other 
one that has been reported is the NBS study of the Women’s Health 
Initiative. And you can actually go and look up the results in those 
published studies. You will find that, for the most part, the results are 
quite comparable with OPEN. There are some small differences here and 
there but, generally speaking, results are fairly consistent. (L. Freedman) 

This question relates to dietary assessments. Usually, an FFQ asks about 
usual intake while a 24 hour recall covers short-term intake. If 
biomarkers capture short-term intake, can they still tell us about error in 
the FFQ? 

I believe they can, yes, because even though dietary biomarkers measure 
short-term intake, if they are recovery biomarkers and they are unbiased, 
and if we assume there is not very much change over time nor large time 
trends in intakes, then several biomarkers, repeat biomarkers, should 
indeed capture usual intake over a longer period. And, therefore, they can 
still be used through statistical modeling to evaluate the food frequency 
questionnaire, which is of course aimed at measuring long-term usual 
intake. So the answer is, yes, I do believe they can be used for that 
purpose. (L. Freedman) 

Could you elaborate on the differences between recovery and 
concentration biomarkers? 

The difference between recovery and concentration biomarkers is a topic 
that’s been discussed much in the literature and I’m sure you can find 
papers, especially those of Rudolph Kaaks, which go into this in great 
detail. In essence, the difference between the two for our purposes are 
that the recovery biomarkers, as I explained in the lecture, are thought 
and have been shown to have the properties that are very desirable for 
evaluating questionnaires in that they are unbiased and they do not have 
errors that are related to the errors in the questionnaire. Concentration 



biomarkers are generally biased measures which do not directly reflect the 
intake of a particular nutrient, although they may be related, correlated, 
to that intake. So you can’t use them directly as a measure of the intake, 
because they are subject to complex metabolic processes, and these 
processes differ in individuals. Then, they often depend on important 
personal characteristics. An example is with the carotenoids, which are 
known to be influenced by smoking. And so there are other extraneous 
variables which impact on them apart from the dietary intake itself, which 
makes their use and their analysis more complicated as a result. But as I 
said in the lecture, they can be used to good effect in dietary work, and I’ll 
be explaining one use in lecture 11 of the series. (L. Freedman) 

 This is another question on biomarkers.  Can you use FFQ or 24 hour 
recall data to relate dietary intakes to concentration biomarkers? 

Well, if the question is can you use them to validate concentration 
biomarkers or to discover the relation of concentration biomarkers to true 
usual intake, I think the answer is no, because as we’ve learned today, the 
self-report instruments themselves are not unbiased measures of dietary 
intake. The best way of validating a concentration biomarker, and by that I 
mean discovering its statistical relationship with true intake, is to conduct 
feeding studies. Such studies have been done for the carotenoids and 
there is now a very interesting large feeding study which is going on in 
Seattle where 150 individuals are being fed what has been established as 
their usual diet, and a whole series of biomarkers are being measured on 
them over a period of, I think, three weeks. So that should provide us with 
some very interesting and useful data for future use of concentration 
biomarkers. (L. Freedman) 
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I’d like to thank Dr. Freedman very much and also extend our appreciation to the 
audience for joining today’s webinar.  Please join us next week for webinar 7, when 
Doug Midthune will discuss methods of accounting for measurement error when 
assessing relationships between a dietary component consumed daily by most persons 
and a health outcome.  
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