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Hello and welcome to the 11th webinar in the Measurement Error Webinar Series. I’m 
Kevin Dodd with the Division of Cancer Prevention at the U.S. National Cancer Institute.  
Today we will be hearing from Dr. Larry Freedman about combining self-report 
instruments and biomarkers, but before we get started, please note that the webinar is 
being recorded so that we can make it available on our Web site. All phone lines have 
been muted and will remain that way throughout the webinar.  Following the 
presentation, there will be a question and answer session; please use the Chat feature 
to submit a question. A reminder: You can find the slides for today’s presentation on 
the Web site that has been set up for series participants.     

Now it’s my pleasure to introduce the presenter for today’s webinar. Dr. Laurence 
Freedman is Director of the Biostatistics Unit at the Gertner Institute for Epidemiology, 
where he directs a research and consulting program in biostatistics and advises the 
government on public health policy. Larry has previously worked for the British Medical 
Research Council and the U.S. National Cancer Institute, where he was Acting Branch 
Chief of the Biometry Branch from 1993-1996 and was part of the team that developed 
the Women’s Health Initiative and the AARP Nutritional Cohort Study. He was founding 
co-editor of Statistics in Medicine, and has also served as co-Editor of Biometrics. As I 
mentioned, today Dr. Freedman will discuss combining self-report dietary intake data 
and biomarker data to reduce the effects of measurement error. Dr. Freedman.   
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Today’s presentation will
be a LIVE audiocast

 

You must join the teleconference 
to listen to the session

(To join, click the telephone icon in the top right of your screen; 
audio will not be broadcast through computer speakers)
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Thank you, Kevin.  

Good morning, afternoon, or evening to everyone. For me it is late afternoon. Today, I 
will be describing methods for combining data from dietary intake self-reports with 
dietary biomarkers, with the object of reducing the errors in dietary intake 
measurement.
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his commitment to understanding measurement error 

associated with dietary assessment.
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This series is dedicated to the memory of our dear colleague, Arthur Schatzkin. 
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And here is a list of the presenters and collaborators in this webinar series. 
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





Objectives

Learning objectives

 
Understanding the motivation for combining 
dietary self-reports and biomarkers

 
Understanding different methods of combining 
self-reports and biomarkers, their aims and the 
knowledge required for implementing each 
method  

 
Understanding the potential gains of such 
combination and the limitations to the methods
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My aims today are, firstly, to give you an understanding of the motivation for combining 
self-reports with biomarkers; secondly, to describe methods of combining these sources 
of data, together with their aims and the information that is required to implement each 
method; and, thirdly, to show you the potential gains as well as the limitations of each 
method. 
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INTRODUCTION
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We'll start with a general introduction.
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





Introduction

Main results on impact of measurement error

 
When a dietary exposure measured with error is 
included in a disease outcome regression 
model:

a) Risk estimates are factored down (attenuated)

b) Study power is decreased (see lectures 6-7)

 
These problems are caused by a loss of 
information about usual dietary intake caused 
by the measurement error

 
In the previous lecture and in this lecture we 
deal with this loss of information
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To understand why we would want to combine self-report data with dietary biomarker 
data, we need to go back to some of the lessons that we learned in lectures 6 and 7 of 
this webinar series. We learned that when self-reports are used in a study to investigate 
a diet-health relationship, the measurement error in the report causes: estimates of 
relative risk or odds ratios to be attenuated towards the null value; and, secondly, study 
power to be decreased. 

These effects are a direct result of the loss of information about usual dietary intake 
that occurs due to measurement error. Both last week's lecture by Doug Midthune and 
my lecture today discuss how we might recover some of the lost information.
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



Introduction

Supplying further information about intake

 
In Lecture 10 we described how combining self- 
report instruments could increase information 
about usual intake and thereby help with relative 
risk estimation and power

 
In this lecture we focus on combining dietary 
self-reports with biomarkers, to increase 
information about intake
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Last week Doug Midthune explained how combining different self-report instruments 
can help to recover some of the lost information and thereby alleviate the attenuation 
of estimated relative risks and loss of study power. Today, we will learn how combining 
self-reports and biomarkers can also help, although we will see that some of the 
conceptual and statistical issues are different from those involved in combining self-
reports. 
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





Introduction

Background

 
Suppose we have a nutritional cohort study in 
which we want to relate usual intake, T, of a 
specific nutrient to a health outcome, Y

 
We will consider the case where Y indicates 
whether an individual develops a specific 
disease (Y=1) or not (Y=0)

 
We cannot measure T exactly and in its place 
we obtain a self-report from a food frequency 
questionnaire, Q
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To place our discussion in a clear context, suppose we are conducting a nutritional 
cohort study in which we have particular interest to relate usual intake, T, of a specific 
nutrient or food group to a health outcome, Y. We'll suppose that the health outcome is 
a binary variable indicating diagnosis of a specific disease. And, as we have noted before 
in this webinar series, we cannot measure T exactly and we obtain, instead, a self-
report. Here we will assume that it is a food frequency questionnaire, and that the 
reported intake is denoted by Q. 
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Introduction

Disease model - logistic regression

Disease model:

log Odds(Y = 1) = 0 + T T + Z1 Z1 … + Zp Zp{ } 

Y = health outcome variable (0 or 1)

T = dietary exposure (true usual intake)

Z1 …,Zp = other exposures, confounders, effect 
modifiers or intermediate variables

’s = log odds ratios for the explanatory variables
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We'll also suppose that the association between the health outcome and the usual 
intake of interest is a logistic regression, as described in this equation.  

As just mentioned, Y is a binary health outcome, and T is the true intake of the dietary 
component of interest. The Z's in the equation are other exposures, confounders, effect 
modifiers, or mediators. In particular, we'll be talking quite a bit today about 
confounders and mediators. The alpha coefficients in the equation are the log odds 
ratios corresponding to each explanatory variable, and we will be particularly interested 
in estimating the log odds ratio, alpha subscript T, for the dietary intake.   
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


 

Introduction

Attenuation

Disease model: 

log Odds(Y = 1) = 0 + T T + Z1 Z1 … + Zp Zp{ } 

Instead of T, we obtain a report Q

 
If we use Q instead of T in the regression, then 
our estimate of T will be attenuated
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We cannot obtain an exact measure of usual intake, T. Our problem is that if we use our 
food frequency report, Q, in its place, then our estimate of the log odds ratio alpha-T 
will be attenuated. 
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



Introduction

Regression calibration to adjust the estimate

Regression calibration: 

log Odds(Y = 1) = 0 + T T + Z1 Z1 … + Zp Zp{ } 

 
Instead of using Q in the regression, use 
E(T|Q,Z)

 
E(T|Q,Z) is the value of true intake that is 
predicted when the report is Q and the other 
explanatory variables are Z1 , … , Zp
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In Lecture 7 of this series Doug Midthune explained the method of regression calibration 
which is used to deattenuate the estimate of the log odds ratio and thereby give an 
unbiased estimate of alpha-T. The method entails using not Q as our measure of usual 
intake, but the expected value of usual intake conditional on Q and on the other 
explanatory variables in the model, denoted by this symbol E, (for expectation), of T (the 
usual intake) given the values of Q and Z.  

You can think of this expression as the predicted value of true intake given our 
knowledge of the reported intake and the other explanatory variables. 
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

– 





Introduction

Usual regression calibration does not increase power

 
Regression calibration removes bias from the estimate, 
but usually makes little or no change to the result of the 
test of the null hypothesis that the log odds ratio is zero

Occasionally a result that was significant using the 
unadjusted method will become non-significant - see 
Lecture 7

 
This is because usual regression calibration uses the 
same information, Q, about dietary intake as does the 
unadjusted method

 
In this lecture, we will consider using together with Q, 
a biomarker value, M
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Although regression calibration successfully removes bias from our estimate of the log 
odds ratio, it unfortunately usually has no impact on the second problem caused by 
dietary measurement error, the loss of study power. In fact, regression calibration 
usually makes little or no change to the result of the test of significance of the log odds 
ratio, and if the result is nonsignificant using the attenuated estimate arising from 
entering the value Q into the logistic regression model, then it is usually also 
nonsignificant using the regression calibration adjustment. In a very small proportion of 
cases, a result that is statistically significant using the unadjusted method can become 
nonsignificant using regression calibration. 

The reason that it usually has no impact on the problem of lost power is because 
regression calibration uses the same information about dietary intake (essentially the 
value Q) as does the unadjusted method. In order to improve the study power, we need 
to bring in additional information about dietary intake, and in this lecture we will 
consider doing that through a dietary biomarker whose value we will denote by M. 
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

– 

– 

Introduction

Methods of combining self-report and biomarker

 
Two main approaches to combining self-reports 
and biomarkers: 

Direct methods, that can sometimes recover 
lost power but do not yield unbiased 
estimates of relative risk

A more complex modeling-based method, 
that recovers lost power and gives unbiased 
relative risk estimates, but that requires more 
information about the biomarker’s relation to 
true usual intake
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We're going to consider two rather different approaches to combining information 
about dietary intake from self-reports and biomarkers. The first, and simpler, approach 
we call the "direct" approach. These methods are relatively easy to use and can 
sometimes recover lost power, but are not guaranteed to do so. In addition, they do not 
yield unbiased estimates of relative risks or odds ratios. 

The second approach we call the "modeling-based" approach, and it will normally 
recover some of the power lost through dietary measurement error and will also give 
unbiased estimates of relative risks or odds ratios. It therefore carries substantial 
advantages over the direct approach. However, unlike with the direct approach, to 
implement the modeling-based method we need to supply information on the relation 
between the biomarker and true usual intake, and the necessary information may not 
always be available.
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BIOMARKERS
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Before we get into the methods of combining biomarkers with self-reports, we need to 
review briefly some background regarding dietary biomarkers.
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

– 

– 



– 

Biomarkers

Biomarkers (1) 

Dietary biomarkers: 
Biological measurements related to dietary intake

 
Recovery biomarkers

Ideal measures of intake that have no 
(or minimal) bias

Only a few are known

 
Concentration biomarkers

Other biomarkers that are correlated with dietary 
intake; these comprise the vast majority of 
biomarkers
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A dietary biomarker is any biological measurement that is related to a dietary intake.   

Two main classes of biomarkers have been recognized. The first class, which has been 
termed recovery biomarkers, are those that are in a sense ideal in that they measure a 
certain dietary intake with little or no bias. Unfortunately, only a few are known.   

The remaining biomarkers, which form the great majority of those available, have been 
termed concentration biomarkers.
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

Biomarkers

Biomarkers (2) 

Recovery biomarkers 

i.  Based on recovery of specific biological products directly 
related to intake, and not subject to substantial inter-individual 
differences in metabolism

ii. Measure short-term intake

iii. Only a few are known:

– 

– 

– 

Doubly-labeled water for energy intake*

Urinary nitrogen for protein intake

Urinary potassium for potassium intake

iv. Measure intake directly with minimal bias. The error is 
independent of true intake

* Under assumption that person is in energy balance
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The recovery biomarkers are called that because they are based on the recovery of 
specific biological products directly related to intake and are not subject to large 
interindividual differences in metabolism. By their nature, they measure short-term 
intake. 

The three that are known are doubly-labeled water for energy intake, 24-hour urinary 
nitrogen for protein intake, and 24-hour urinary potassium for potassium intake. 
Besides measuring intake with minimal bias, they also have the important property that 
their errors are independent of true intake. 
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

Biomarkers

Biomarkers (3)

 
Concentration biomarkers 

i. Concentrations in blood, urine or tissues of 
specific chemicals or compounds

ii. Related to dietary intake but not in a 
straightforward manner

iii. Could depend on factors that affect metabolism 
(e.g., gender, smoking, other dietary intakes)

iv. Very many are known: 
e.g., Serum lipids, carotenoids, vitamins, metals
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The concentration biomarkers are called that because they are usually based on 
concentration of specific chemicals or compounds found in blood, urine, or tissues. They 
are related to dietary intake, but not in a straightforward manner.  Because of the 
complex metabolic processes underlying them, they could depend on dietary factors 
other than the target component, or on nondietary factors such as hormone levels, 
gender, or smoking. 

This is a large class including serum lipids, carotenoids, vitamins, and metals, among 
others. 



Combining self-report dietary intake data and biomarker data to reduce the effects of measurement error19





Biomarkers

Biomarkers (4)

Use of biomarkers

 
Recovery biomarkers:  

i. As the reference instrument in validation 
studies (see Lectures 6 and 7)

ii. Combined with self-reports, using the same 
methodology as described in lecture 10

 
Concentration biomarkers:

i. Combined with self-reports using methods 
we will describe in this lecture      
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The recovery biomarkers have been extremely useful in the evaluation of self-report 
instruments, as we have already explained in lectures 6 and 7 of this series. They could 
also be used, potentially, in combination with self-reports using the same methods as 
were described by Doug Midthune in the previous lecture, with the object of increasing 
precision in measuring dietary intake. However, this latter use is limited by their high 
cost or difficulty of specimen collection.  

The concentration biomarkers can be combined with self-reports, also with the object of 
increasing the precision in measuring dietary intake, and that's what I'm going to 
describe to you now.  
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DIRECT METHODS
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As I mentioned earlier, there are two main types of methods for combining 
concentration biomarkers with self-reports. The first type of method, which is the 
simpler one, we call the direct method. 
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Direct methods

Introduction

Suppose that we conduct to investigate the association 
between a dietary intake T and a health outcome Y.

We measure the dietary intake using a self-report 
instrument, e.g., an FFQ, value denoted by Q. We also 
measure a dietary biomarker for the intake, with value M.

In the usual unadjusted method, we regress:

Outcome Y on (i) FFQ reported intake Q, and 
(ii) confounders Z

leading to loss of power, because of measurement error 
in the FFQ-report Q.
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Suppose that we are interested in the association of a dietary component whose true 
usual is T and a health outcome, Y. We cannot measure T, but we obtain a self-report 
from a food frequency questionnaire denoted by Q, and also a dietary marker value for 
that component, denoted by M.  

In the usual approach, we investigate the association by regressing health outcome Y on 
the food frequency questionnaire value, Q, together with some known confounders, Z. 
This approach involves loss of statistical power due to the measurement error in the 
self-reported intake. 
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Direct methods

Direct methods (1)

Instead, we can incorporate the dietary biomarker 
value M into the analysis, as follows:  

In the principal component (PC) method, we regress:

Outcome Y on: 
(i) first principal component of (Q,M), and
(ii) confounders Z

 

In Howe’s method we regress:

Outcome Y on: 
(i) sum of the ranks of Q and M, and 
(ii) confounders Z



Slide 22 

Instead, because we have the biomarker measurement available as well as the self-
report, we can combine them in one of two ways. Firstly, we may use principal 
components. The principal components method is a way of forming a set of linear 
combinations of a set of correlated variables so that the combinations themselves are 
uncorrelated. The first component is always the one that has the highest variance 
possible, and is often used to serve as a summary measure of the full set of variables. 
Accordingly, we take the first principal component of the pair of variables Q and M as 
our measure of dietary intake, and use that together with the confounders, Z, in the 
regression model for the health outcome, Y.  

Secondly, we can use Howe's method. This involves taking the sum of each participant's 
ranks according to each variable Q and M. This sum is then used as the measure of 
dietary intake, and is entered together with the confounders into the regression for the 
health outcome Y. I will spell both of these methods out in greater detail in just a 
minute, but first I want to make a few general points about them.
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Direct methods

Direct methods (2)

Note that these two methods (PC and Howe’s):

1. Do not adjust for the attenuation in the estimated relative 
risk

2. Will in some circumstances recover some of the lost 
power caused by measurement error

3. Do not require knowledge of the quantitative relationship 
between marker level and true dietary intake

4. Do require that the marker (as well as the FFQ) is 
measured in all participants*

* A small amount of missing data may be accommodated
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There are several advantages and disadvantages of these two approaches. Firstly, the 
estimated coefficient of the combined intake variable is not adjusted for measurement 
error, so it will likely be attenuated. However, note that the combined variable itself has 
no recognized units and so the actual value of the estimated coefficient is not of 
intrinsic interest. What is of interest is its sign and whether or not it is statistically 
significant.      

Secondly, in some but not all circumstances, the method will recover some of the power 
lost due to measurement error in the FFQ. 

Thirdly, we do not need any external information regarding the relationship of the FFQ 
or the marker to true usual intake. The method can be used just on the data observed in 
the study. 

And, fourthly, we need all participants to have a marker value, M, as well as the self-
report, Q, and the health outcome, Y, although small amounts of missing information 
can be accommodated. 
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Direct methods

Direct methods (3)

Details – PC method:

1. The first principal component is given by:
PC = Q/sd(Q) + M/sd(M)

if Q and M are positively correlated

2. The first principal component is given by:
PC = Q/sd(Q) - M/sd(M)

if Q and M are negatively correlated

3. Regress Y on PC and confounders, Z

4. Test the statistical significance of the coefficient of PC
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Before we proceed to an example that illustrates these methods, there are a few notes 
on each that will be helpful to those who want to use them. We start with the principal 
components method. 

In the case where there are just two variables, the self-report and the marker, the first 
principal component takes a very simple form. It is the weighted sum of the two 
variables where the weight is the inverse of the standard deviation of the variable. This 
is shown in the formula presented here. The formula holds if the two measures are 
positively correlated.  

If they are negatively correlated, then instead of the sum we take the difference, as 
shown here. And then, as previously explained, once we have formed the principal 
component variable and calculated it for each participant, we enter it together with the 
confounders into a regression model for the health outcome and test whether its 
coefficient is significantly different from zero. 
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Direct methods

Direct methods (4)

Details – Howe’s method:

1. The method is a non-parametric procedure

2. Rank the Q’s according to their values from lowest to highest

3. Rank the M’s according to their values from lowest to highest

4. For each individual calculate H = Q-rank + M-rank (or, if Q 
and M are negatively correlated, H = Q-rank - M-rank) 

5. Regress Y on H and confounders, Z

6. Test the statistical significance of the coefficient of H
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Howe's method for two variables may be thought of as a nonparametric version of the 
principal components method. The way it is performed is as follows.  

First, the participants are ranked according to their self-report values, Q. And then the 
same is done according to their marker values, M. Then, each participant's ranks on the 
two variables are summed, giving a result denoted by H for Howe. Finally, as before, H is 
entered with the confounders into the regression model for the health outcome, and 
the regression coefficient for H is tested.  
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Direct methods

Direct methods (5)

Example: Carotenoids in Eye Disease Study (CAREDS)

1. Ancillary study of the Women’s Health Initiative 
Observational Study

2. 1802 women were recruited to CAREDS during 
2001-4

3. Disease of interest, Y: nuclear eye cataract; 
defined according to current eye examination or 
reported previous treatment for cataract
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We'll now look at an illustrative example taken from an ancillary study of the Women's 
Health Initiative known as CAREDS, where the interest was in associations between 
carotenoids and eye disease. There were 1,802 women in this ancillary case-control 
study and the eye disease of interest in our example is nuclear cataract. 
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Direct methods

Direct methods (6)

Example: Carotenoids in Eye Disease Study (CAREDS)

4. Dietary intake of interest, Q: 
FFQ-reported lutein plus zeaxanthin

5. Biomarker, M: 
serum level of lutein plus zeaxanthin

6. Confounders, Z: 
age (y) 
smoking (0=never, 1=past, 2=current)
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The carotenoid intakes of particular interest are lutein and zeaxanthin, which are 
combined for our analysis. Available in the study were: a food frequency questionnaire 
report on these carotenoids, and also the serum levels. The most important 
confounders were age and smoking, and we restrict our analyses to these in our 
example.  
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Direct methods

Direct methods (7)
Example – Carotenoids in Eye Disease Study (CAREDS):

Logistic regression analyses relating nuclear cataract to 
dietary lutein/zeaxanthin

Sample 
size ratio*

Z-value95% CIEstimated 
Odds 
Ratio†

Method

--2.04(0.57,0.99)0.75Unadjusted
0.45-3.05(0.49,0.86)0.65PC 
0.43-3.11(0.49,0.85)0.65Howe

† Comparing the 90th percentile to the 10th percentile
* Compared to the unadjusted method:

Sample size required is proportional to 1/z2

So sample size ratio is the inverse ratio of the z2 values
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This slide shows a table with the results of applying the usual regression analysis to the 
data in this study, based on diet report alone, compared to the principal components 
and Howe methods.  

The second column shows the estimated odds ratios of nuclear cataract for lutein and 
zeaxanthin. Remember that I mentioned earlier that the units of the combined 
measures were not really meaningful. To overcome that, we have expressed the odds 
ratios to compare the risk of individuals at the 90th percentile of measured intake with 
the risk of those at the 10th percentile (of the control group). You can see that with the 
introduction of the marker information, either using principal components or Howe's 
method, the estimated odds ratios become stronger. And in the fourth column you can 
see that they are more highly statistically significant, with larger negative z-values.  

From these z-values one can estimate the sample size savings that could accrue from 
use of the marker information. This last column tells us that one could obtain 
approximately the same power as a study with just self-report data from a study that 
had about 45 percent of the number of participants in that study but that included 
marker data on all participants as well as self-report data.  
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MODELING
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Although the previous example shows that the direct approach to combining self-
reports and markers can yield useful results, to get the full benefits of adding the 
marker information, one needs to take a modeling approach. 
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Modeling

Modeling the intake-marker-disease relationship (1)

Disadvantages of the direct methods:

1. They do not always increase statistical power, 
and sometimes decrease it*

2. The estimated odds ratios are attenuated

3. The combined measure (PC or Howe) does not 
have any recognized units

* For example, when the marker is poorly correlated with 
intake, or has a weaker relationship with disease than 
the self-reported intake
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As I've already mentioned, the direct approach carries several disadvantages. Firstly, it 
does not always lead to increased statistical power, and sometimes its use can lead to 
further loss of power. For example, if the marker has a weaker relationship with the 
health outcome than does the self-report, then power will be lost by combining them.  

Secondly, the estimated odds ratios are attenuated and no correction is made for that. 
And, thirdly, as I mentioned earlier, the combined measure of marker and self-report 
does not have any recognized units. 
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

Modeling

Modeling the intake-marker-disease relationship (1a)

 
To make progress in addressing these 
deficiencies, we have to consider models of diet, 
their markers and health outcomes, including 
aspects of causality



Slide 31 

All of these difficulties can be overcome in a modeling approach. But in doing so, we 
have to consider some more complex models, including issues of causality. And that's 
what we will do now. 
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Modeling

Modeling the intake-marker-disease relationship (2)

Causal pathways: dietary intake, biomarkers, and disease

Confounders: Z

Health 
outcome: Y

Measured 
Marker: M

Reported 
Intake: Q

True 
biomarker 
level: MT

True 
dietary 

intake: T
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This is a causal pathway diagram that describes relationships between dietary intake, 
biomarker and health outcome. Starting with the box for true dietary intake, T, and 
following its arrows, we see that the model postulates that the intake, T, causes a 
change in the biomarker, M, which in turn affects the health outcome, Y. In addition, the 
intake, T, can also affect the health outcome through pathways that do not involve the 
marker.  

As with previous models, we have considered there are confounders, Z, and these can 
affect the true intake, the marker, and the health outcome.  

Lastly, the true intake is not observed but is reflected by the self-report, Q, and, 
similarly, the true value of the biomarker, M subscript T, is not observed but is reflected 
by the measurement of the marker, denoted as before by M that we obtain from our 
assay.  
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

–

– 

– 

  

Modeling

Modeling the intake-marker-disease relationship (3)

Causal pathways: 
Dietary intake, biomarkers, and disease

Main assumptions:

Dietary intake T causally affects the 
biomarker level MT

The biomarker level MT may (at least partially) 
mediate the effect of dietary intake T on 
disease Y

The main confounders Z are known and are 
measured exactly



Slide 33 

The pathway diagram you've just seen actually includes a number of important 
assumptions that we are making in adopting such a model. The main assumptions are: 

 

 

 

Firstly, the dietary intake causally affects the biomarker level.  

Secondly, the marker may at least partially mediate the effect of dietary intake 
on the health outcome. This seems reasonable when the marker is a serum or 
tissue level of the dietary component of interest.   

And, thirdly, the main confounders are known and measured exactly.  

This last assumption is the strongest of the three. And, indeed, the greatest challenge to 
the reliability of results that use dietary concentration biomarkers is the question of 
whether we can identify the important confounders.
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Modeling

Modeling the intake-marker-disease relationship (4)

Statistical Models that describe the causal pathways: 
1. Health outcome model:

logit(P(Y = 1)) = 0 + 1 T + 2 MT + Z Z

2. Marker-Intake model: 
MT = 0 + 1 T + Z Z + MT

3. Reported intake model:
Q = 0 + 1 T + Q

4. Measured marker model:
M = MT + M
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The pathway diagram that you've seen can be described by four different statistical 
models, all acting together. They are shown on this slide.  

The principal model is the health outcome model, shown here. It describes the way that 
the dietary intake, T; the biomarker, M subscript T; and the confounders, Z, jointly act to 
influence the health outcome, Y, in the form of logistic regression, assuming here that 
the health outcome is a binary variable indicating disease status.  

The second model describes how the dietary intake, T, and confounders, Z, influence the 
biomarker, M subscript T. Here, as in the health outcome model, it is important to know 
and measure the main confounders.  

The third model describes how self-reported intake, Q, is related to true intake, T, and is 
similar to the measurement error models that were described in lectures 6 and 7 of this 
webinar series.  

And the fourth model describes the measurement error model for the measured 
biomarker. Note that here we assume classical measurement error. In other words, we 
assume that the measured biomarker, M, is an unbiased measurement of the true 
biomarker level, M subscript T, with random errors that are independent of the true 
biomarker level. 
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Modeling

Modeling the intake-marker-disease relationship (5)

1. Health outcome model

Confounders: Z

Health 
outcome: Y

Measured 
Marker: M

Reported 
Intake: Q

True 
biomarker 
level: MT

True 
dietary 

intake: T

1

2

Z
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The next set of four slides will show which parts of the causal pathway diagram 
represents each of the four component models whose equations you have just seen. In 
this first diagram, you see the health outcome model component comprising all of the 
arrows leading to the health outcome box. Each of the arrows carries the coefficient of 
the variable in the regression model, so that the arrow from true intake, T, to health 
outcome, Y, carries the coefficient alpha_1, etc. 
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Modeling

Modeling the intake-marker-disease relationship (6)

2. Marker-intake model

Z
Confounders: Z

Health 
outcome: Y

Measured 
Marker: M

Reported 
Intake: Q

True 
biomarker 
level: MT

True 
dietary 

intake: T 1
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And this slide shows the marker-intake model with the arrows leading from true intake 
and the confounders to the true biomarker level. 
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Modeling

Modeling the intake-marker-disease relationship (7)

3. Reported intake model

Confounders: Z

Health 
outcome: Y

Measured 
Marker: M

Reported 
Intake: Q

True 
biomarker 
level: MT

True 
dietary 

intake: T

1
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This slide shows the model for dietary self-report. 
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Modeling

Modeling the intake-marker-disease relationship (8)

4. Measured marker model

1

Confounders: Z

Health 
outcome: Y

Measured 
Marker: M

Reported 
Intake: Q

True 
biomarker 
level: MT

True 
dietary 

intake: T
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And this last slide of the set shows the classical measurement error model for the 
measured biomarker level, the figure 1 denoting the coefficient for M subscript T in that 
model. 
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WHAT IS THE TARGET?
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Having described the postulated causal model that underlies our measurements, we 
must now address what risk parameter we are interested in estimating. Because of the 
complex causal model, this is not quite as straightforward as in simpler situations where 
we usually want to estimate a simple odds ratio or relative risk. 
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What is the target?

What is the target? (1)

Confounders: Z

Health 
outcome: Y

True 
biomarker 
level: MT

True 
dietary 

intake: T 1

1

2

Model without measurement error

Direct (non-mediated) effect of diet on disease = 1

Indirect (mediated) effect of diet on disease = 1 2

Total effect of diet on disease = 1 + 1 2
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To make the discussion simpler, we'll for the moment forget that we have error-prone 
measurements and suppose that we can measure true intake and the true biomarker 
level. This slide shows such a model. The coefficients in the health outcome model (the 
alphas) and the marker-intake model (the gamma) are shown beside the relevant 
arrows, as before. Also, for simplicity, we have omitted the coefficients of the 
confounders.   

You can see that there are two separate pathways from intake, T, to health outcome, Y. 
One goes directly from T to Y, and is known as the direct effect. Its magnitude is given by 
the coefficient alpha_1.  

The other pathway goes through the marker, and is known as the indirect or mediated 
effect. Its magnitude is the product of the coefficient for the arrow going from T to M 
subscript T and the coefficient for the arrow going from M subscript T to Y; in other 
words, gamma_1 times alpha_2.  

According to the model, when a unit change is made to intake, T, the total effect on 
outcome Y is the sum of the direct and indirect effects; in other words, alpha_1 plus 
gamma_1 times alpha_2. We call this the total effect of diet on health outcome. For a 
logistic health outcome model, it is the log odds ratio for a change in intake of one unit. 
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








 

– 

–

     

What is the target?

What is the target? (2)

 
Total effect of diet on disease    1 1 2

We will denote this quantity by

 
Our object is: 

to estimate  

 and, to test whether 
  
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It is this total effect that we are usually most interested in estimating. We will denote it 
by alpha_1_ star. Our object is to estimate it and also test whether or not it is equal to 
zero. 
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What is the target?

What is the target? (3)

Confounders: Z

Note that when there is no measurement error we can 
*

1estimate by MT dropping from the model 

Health 
outcome: Y

True 
dietary 

intake: T

*
1

*
Z
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When there is no measurement error, there is a much simpler way of estimating the 
direct effect than estimating each of the parameters alpha_1, gamma_1, and alpha_2, 
and then calculating alpha_1 plus gamma_1 times alpha_2, according to the formula 
shown earlier. Instead, all we have to do is ignore the biomarker and use a simple model 
relating dietary intake to health outcome, retaining the confounders, as shown in this 
slide. If we do that, then the coefficient for the intake is indeed the total effect of intake 
on health outcome.  

Unfortunately, when there is measurement error in the dietary intake, matters are no 
longer so simple, as we will see. 
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ESTIMATION
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So in the next section we will consider various methods of estimating our target 
parameter, the log odds ratio, for the total effect of the dietary intake on disease risk. 
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Estimation

Estimating the total dietary effect (1)
Methods:

1. Unadjusted: 
Regress health outcome on Q and Z and take the coefficient 
of Q

2. Regression Calibration 
Regress health outcome on E(T|Q,Z) and Z and take the 
coefficient of E(T|Q,Z)

3. “Enhanced” Regression Calibration: 
Regress health outcome on E(T|Q,M,Z) and Z and take the 
coefficient of E(T|Q,M,Z)

4. New method: 
Regress health outcome on E(T|Q,M,Z), E(MT |Q,M,Z) and Z 
and calculate 1 + 1 2
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We will consider four different estimates of our target parameter.   

The first, that we call the unadjusted method, is the usual one of entering the self-
reported intake, Q, together with confounders, Z, into the logistic regression model. We 
learned in Lecture 6 that this gives attenuated estimates of the log odds ratio, and also 
loses power, because of the measurement error in Q.     

The second estimate comes from the usual regression calibration method , where we 
enter into the logistic regression not the self-reported intake, Q, but the expected (or 
predicted) true intake given the values of Q and the values of the confounders, which 
we denote by the symbol E (for expectation) of true intake, T, given Q and Z. The 
coefficient of this variable in the logistic regression then serves as our estimate of the 
log odds ratio. We learned in lecture 7 that this method will give us an unbiased—that 
is, deattenuated—estimate of the log odds ratio, but it will usually not recover any of 
the lost statistical power.   

The third method we call enhanced regression calibration, and it is very similar to the 
usual regression calibration method, except that we use the biomarker value, M, as well 
as the self-report, Q, and confounders, Z, in order to predict the true intake, T. This is 
denoted by the expression E of T given Q, M, and Z. As before, the coefficient of this 
variable in the logistic regression gives the estimate of our targeted log odds ratio. This 
method was suggested by Prentice and colleagues in a paper in the American Journal of 
Epidemiology in 2009.  

The fourth method, which we call the new method, uses the full health outcome model 
that we considered in an earlier section, which includes as explanatory variables the 
dietary intake, the biomarker, and confounders. To obtain unbiased estimates of odds 
ratios from this model, we use the regression calibration version of it; that is, we enter 
for the dietary intake the predicted true intake given self-reported intake, measured 
biomarker, and confounders, and for the biomarker we enter the predicted true 
biomarker given the measured biomarker, self-reported intake, and confounders.  

Having obtained the estimates of the log odds ratios alpha_1 and alpha_2 for the 
dietary intake and biomarker, respectively, we then calculate the log odds ratio of the 
targeted parameter as alpha_1 plus gamma_1 times alpha_2, as explained previously.    
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*
Z

Estimation

Estimating the total dietary effect (2)

The first three methods take the following model and substitute different 
quantities for T: Q or E(T|Q,Z) or E(T|Q,M,Z) 

Confounders: Z

Health 
outcome: Y

True 
dietary 

intake: T

*
Z

*
1
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The slide illustrates the first three of these methods graphically. Essentially, we are 
leaving the biomarker out of the model and relating true dietary intake to the disease, 
with control for confounders. The three methods differ only in the measure used for the 
true dietary intake, T. 
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Z

Estimation

Estimating the total dietary effect (3)
The new method takes the full model and substitutes E(T|Q,M,Z) for T 
and E(MT |Q,M,Z) for MT

The parameters 1 and 2 are estimated and then 1 + 1 2

Confounders: Z

Health 
outcome: Y

True 
biomarker 
level: MT

True 
dietary 

intake: T 1 2

1



Slide 46   

The new method uses the full causal model that we described earlier, estimates the 
relevant log odds ratio parameters, the alphas and the gamma, and computes the 
targeted log odds ratio in the manner already described. 
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







 – 

 – 

 – Unbiased only if marker does not mediate the effect 
of diet (2 =0)

 – 

Estimation

Estimating the total dietary effect (4)

Which of these methods estima 
1tes      without bias?

Unadjusted
Unbiased only if Q has no measurement error

Regression Calibration
Unbiased

“Enhanced” Regression Calibration

New method
Unbiased
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So we first need to understand which of these methods gives us biased estimates of our 
target parameter and which gives us unbiased estimates. This question can be answered 
by some theoretical statistical work, and we have also checked it out with simulations.  

The theory tells us that the unadjusted method is biased unless there is no 
measurement error in the self-report, as we have already learned. It also tells us that 
usual regression calibration is unbiased, which we have also already learned.  

The new results are, firstly, that enhanced regression calibration gives biased estimates 
of the targeted log odds ratio whenever there is some mediation of the dietary effect 
through the biomarker, and that the estimate obtained from the new method is 
unbiased. 
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

– 

– 

– 

– 

Estimation

Implementing the estimation (1)

 
Data available: Q, M, Z 
Example – (CAREDS):

Y: eye cataract (yes/no)

Q: log FFQ-reported lutein plus zeaxanthin

M: log serum level of lutein plus zeaxanthin

Z: age (y) 
smoking (0=never, 1=past, 2=current)
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So far, we have been talking quite theoretically. Let's see how these methods are 
implemented in a real example. We're going back to the CAREDS study that I described 
to you earlier when we were looking at the simpler direct approach to combination of 
self-reports and biomarkers.  

Just to remind you, the disease outcome, Y, is nuclear cataracts of the eye; the self-
reported intake, Q, is the logarithm of a food frequency questionnaire report of lutein 
and zeaxanthin intake combined; the biomarker, M, is the logarithm of their combined 
serum levels; and the confounders are age and smoking. 
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Estimation

Implementing the estimation (2)

Methods:

1. Unadjusted: 
Directly implemented: logistic regression of Y ~ Q, Z

2. Regression Calibration: 
First determine E(T|Q,Z); then Y ~ E(T|Q,Z), Z

3. “Enhanced” Regression Calibration: 
First determine E(T|Q,M,Z); then Y ~ E(T|Q,M,Z), Z

4. New method: 
First determine E(T|Q,M,Z), E(MT |Q,M,Z); 
then Y ~ E(T|Q,M,Z), E(MT |Q,M,Z), Z ; 
then calculate 1 + 1 2
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And here, once more, are the definitions of the four methods that we have just 
described. To implement the second, third, and fourth methods, we have to compute 
the predicted true intake, T, using just the self-report and confounders, or, for enhanced 
regression calibration, using also the biomarker.  

For the new proposal we also have to predict the true biomarker level. These 
predictions are made through what we call calibration equations. 
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





Estimation

Implementing the estimation (3)

Determining the calibration equations:

 
Usually one needs feeding studies to relate 
biomarker to dietary intake, and population studies 
of the biomarkers and the dietary instruments to 
obtain population means and SDs

CAREDS: 

 
Feeding studies: 
Van het Hoff et al, Am J Clin Nutr 1999, 70:261 
Brevik et al, Eur J Clin Nutr 2004, 58:1166

 
Population studies: 
Delcourt et al, Invest Opthalmol Vis Sci 2006, 47:2329 
Dixon et al, J Nutr 2006, 136:3054 
Mares et al, Am J Clin Nutr 2006, 84:1107
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Whether these calibration equations can be built will depend on the external 
information that is available. Usually, what are required are one or more feeding studies 
to relate the biomarker level to the true intake, and one or more population-based 
studies to obtain population means and standard deviations of biomarker levels, and 
self-reported intakes. Fortunately, these are available in the case of lutein and 
zeaxanthin, and references to these studies are shown here. 
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

Estimation

Implementing the estimation (4)

Determining the calibration equations (cont’d)

 
Using data from these studies, we built three models 
(all measurements were transformed to the log scale)

Marker-intake model: 
MT = 5.29 + 0.60T + e, var(e) = 0.10  

Reported intake model: 
Q = 0.35 + 0.71T + eQ , var(eQ ) = 0.36

Measured marker model: 
M = MT + eM , var(eM ) = 0.05

* Note that in these models it is assumed that the confounders Z have no 
bearing on measurement error
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Using the information reported from these studies, we first built three models 
describing the relation of marker to true intake and measurement error in the self-
report and in the measured biomarker.  

A while ago in this lecture, you may remember that when describing the full causal 
pathway graph underlying the relationships between dietary intake, biomarker, and 
disease, we saw that the graph actually comprised four models. The three models 
shown in this slide are actually specific versions of three of those four models, with the 
health outcome as yet being unspecified.  

So we see here a marker-intake model, a self-reported intake measurement model, and 
a marker measurement error model. The parameters of these models, including the 
variances of the random error terms, are all based upon the information from the 
references shown in the previous slide.  

Note that we assume that these models are not modified by the confounders in the 
health outcome model—age and smoking. Although we cannot be certain that this 
assumption is true, the available references did not provide information on this issue. 
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

Estimation

Implementing the estimation (5)

Determining the calibration equations (cont’d)

 
The final step is to turn these measurement error 
models into calibration equations

Regression Calibration
E(T | Q, Z) = 0.355 Q + 0.00560 age – 0.101 smoking

Enhanced Regression Calibration
E(T | Q, M, Z) = 0.242 Q + 0.515 M + 0.00692 age – 0.0954 smoking

New Method
E(T | Q, M, Z) = 0.242 Q + 0.515 M + 0.00692 age - 0.0954 smoking
E(MT | Q, M, Z) = 0.051Q + 0.769M + 0.00059 age - 0.0023 smoking
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Once those three models have been constructed, it is a relatively simple statistical task 
to convert the models into calibration equations using also information from the 
CAREDS study itself on the relation between the confounders and the self-reported 
intake and measured biomarker. The calibration equations are shown in this slide.  

You can see here that each is a linear equation including self-report, Q; confounders, Z; 
and except for usual regression calibration, also the biomarker, M.  

It can be noticed in the equations for the new method that when predicting true dietary 
intake, the biomarker and the self-reported intake are both influential; you can see that 
their coefficients are large (0.515 and 0.242, respectively). However, when predicting 
the true biomarker level, the measured biomarker level is highly important (with a 
coefficient of 0.769) and the self-reported intake has little influence (with a coefficient 
of 0.051). The confounders have relatively little contribution in these predictions.   
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

Estimation

Implementing the estimation (6)

Results

 
Logistic Regression Analyses Relating Nuclear 
Cataracts to Dietary Lutein and Zeaxanthin in the 
CAREDS study

z-value
Standard 

Error 
Log Odds 

RatioMethod

-2.070.08-0.16Unadjusted

-2.070.22-0.46Regression Calibration

-3.150.16-0.51Enhanced Regression Calibration

-2.000.22-0.44New Method
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This table shows the results obtained from the four methods when applied to the 
CAREDS data. You can see in the first row of the table that the estimated log odds ratio 
from the unadjusted method is much smaller than those from the other three methods, 
displaying the attenuation that we would expect to see.  

The two unbiased methods, usual regression calibration and the new method, yield 
similar estimates, whereas enhanced regression calibration gives a slightly larger value.  

We will consider the other columns of the table in the next section. 
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



* 

Estimation

Implementing the estimation (7)

Conclusion

 
For this study either regression calibration or the 
new method could be used, since theoretically 
both are unbiased.

 
Therefore, the point estimate for the log odds 
ratio could be taken as -0.45 (midway between 
the two estimates). This translates into an odds 
ratio of 0.73* corresponding to a doubling of 
lutein/zeaxanthin intake.

0.73 = exp(-0.45 
 

ln(2))
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So the conclusions from this analysis, in relation to the strength of the association 
between lutein and zeaxanthin intake and eye cataracts, are as follows.  

Firstly, both usual regression calibration and the new method are for this study 
theoretically unbiased and produce similar estimates. We could therefore take the 
estimate of the log odds ratio as -0.45, midway between the two estimates. And this 
translates into an odds ratio of 0.73 associated with a doubling of the lutein/zeaxanthin 
intake.  

The calculation for this translation to the odds ratio associated with a doubling of the 
intake is shown on the bottom line of the slide. 
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HYPOTHESIS TESTING
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So far, we have concentrated on how to use modeling to estimate the targeted odds 
ratio. We now turn to hypothesis testing, and particularly to the question of statistical 
power to detect the odds ratio as statistically significant. 
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



– 

Hypothesis testing

Testing the null hypothesis of a zero total dietary effect (1)

Besides estimating the odds ratio, we also want 
 to test whether 

1  0

 
The four methods of estimation each lead to a 
test of this null hypothesis:

Compare z = estimate/SE with the standard 
normal distribution 
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We want to test whether the targeted log odds ratio is zero or not. The four methods of 
estimation that we have considered all lead naturally to a method of testing this 
hypothesis. All that we have to do to convert the estimate into a test is to consider the 
ratio of the estimate to its standard error, and compare the ratio to the standard normal 
distribution. 
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

Hypothesis testing

Testing the null hypothesis of a zero total dietary effect (2)

 
Example: 
Logistic Regression Analyses Relating Nuclear 
Cataracts to Dietary Lutein and Zeaxanthin in the 
CAREDS study

P-value 
(2-sided)z-value

Standard 
Error 

Log Odds 
RatioMethod

0.038-2.070.08-0.16Unadjusted

0.038-2.070.22-0.46Regression Calibration

0.002-3.150.16-0.51Enhanced Regression 
Calibration

0.046-2.000.22-0.44New Method
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Here is the same table that I showed you just before for the CAREDS study example. 
Previously, we concentrated on the estimates of the log odds ratio in the second 
column. The third column shows the standard errors of each estimate, and the fourth 
column, their ratio.  

I have added an extra column at the end that shows the P-value. We'll consider the 
actual values in just a minute. 
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–







– 

– 

Hypothesis testing

Testing the null hypothesis of a zero total dietary effect (3)

 
Which of these methods is valid?

i.e., yields a test that has the correct probability 
of rejecting the null hypothesis when it’s true

 
Answer:

All four methods yield valid tests! 

 
Why?

 Because each estimation method is unbiased 


1when the total dietary effect      is zero, even 
though the unadjusted and enhanced RC 
methods are otherwise biased



Slide 58  

But, first, we have to ask the question: Which of these tests is a valid test of the null 
hypothesis? In other words, for which of these tests is the probability of rejecting the 
null hypothesis actually equal to more or less 5 percent when the nominal 5 percent 
level is used and the null hypothesis is true? One might expect that the test would be 
valid only for those methods that give an unbiased estimate of the log odds ratio.  

The surprising answer is that all four tests are valid. And the reason is that when the null 
hypothesis is true, and the log odds ratio is truly zero, then all of the estimates will be 
unbiased and will on average equal zero, even the unadjusted estimate and enhanced 
regression calibration estimate that are otherwise biased.  
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



– 

Hypothesis testing

Testing the null hypothesis of a zero total dietary effect (4)

 
Since all of these methods of testing the null 
hypothesis are valid, which is the most 
powerful?

 
Answer: 

The enhanced RC method



Slide 59     

Since all four tests are valid, the next question to ask is: Which of them is statistically the 
most powerful? In other words, which of them is the most likely to detect an odds ratio 
that is truly different from unity? 

The simple answer to this question is that the enhanced regression calibration method 
is the most powerful of the four tests. 
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Hypothesis testing

Testing the null hypothesis of a zero total dietary effect (5)

 
Logistic Regression Analyses Relating Nuclear Cataracts to 
Dietary Lutein and Zeaxanthin in the CAREDS study:

The method leading to the largest z-value and smallest P 
is Enhanced Regression Calibration

P-value 
(2-sided)z-value

Standard 
Error 

Log Odds 
RatioMethod

0.038-2.070.08-0.16Unadjusted

0.038-2.070.22-0.46Regression Calibration

0.002-3.150.16-0.51Enhanced Regression 
Calibration

0.046-2.000.22-0.44New Method



– 
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We see this fact reflected in the table of results for the CAREDS study example. The 
enhanced regression calibration method leads to the most extreme of the z-values and 
the smallest p-value. The intuitive reason for this gain in power over usual regression 
calibration is that using the marker in addition to self-reported intake to predict true 
dietary intake has increased the precision of our predictions, and the more precise 
estimates of true dietary intake then increase the power of detecting the association 
with disease.  
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

Hypothesis testing

Testing the null hypothesis of a zero total dietary effect (6)

 
Sample size savings: 
Estimated sample size required is proportional to 1/z2 

Estimated sample size ratio for Enhanced RC versus 
RC = (2.07/3.15)2 = 0.43 

Required sample size is reduced by >50%! 

P-value 
(2-sided)z-value

Standard 
Error 

Log Odds 
RatioMethod

0.038-2.070.08-0.16Unadjusted

0.038-2.070.22-0.46Regression Calibration

0.002-3.150.16-0.51Enhanced Regression 
Calibration

0.046-2.000.22-0.44New Method
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If we want to translate this advantage in power to potential savings in sample size, then 
we can consider the inverse ratio of the squares of the z-values for the two methods. 
For usual regression calibration the z-value is -2.07 and for enhanced regression 
calibration it is -3.15. The inverse ratio of their squares is 0.43, meaning that it is 
estimated that in order to achieve the same statistical power, a study that incorporates 
the marker in the prediction of true intake would require only 43 percent of the sample 
size required in a study that does not incorporate the marker information.  

Computer simulations that we have conducted indicate over a range of circumstances 
that enhanced regression calibration is the most powerful approach, and these results 
are presented in a paper in press in the American Journal of Epidemiology.  
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

– 

– 

Hypothesis testing

Testing the null hypothesis of a zero total dietary effect (7)

 
Recommended overall strategy: 

Estimate the odds ratio using an unbiased 
method—either the new method or, for cases 
like CAREDS, the RC method

Test the odds ratio using Enhanced RC that 
incorporates marker information and thus 
increases power
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So our overall strategy that we recommend based on this work is that for estimation the 
targeted odds ratio should be estimated by usual regression calibration or the new 
method we propose, and for testing the null hypothesis of no association between 
dietary intake and health outcome, the enhanced regression method should be used.  

One question that arises from these results is: Why should we bother using the new 
method when usual regression calibration gives an unbiased estimate and enhanced 
regression calibration gives a more powerful test? In fact, we will see in the next section 
that there is a situation where the new method is the only one of the four methods that 
provides an unbiased estimate of the risk parameter. 
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DISCUSSION



Slide 63    

Actually, there are a number of important issues that need to be considered when 
thinking about using biomarkers in the manner we have described. 
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



Discussion

An example where the RC method gives biased estimates  

 
Prentice et al: Am J Epidemiol. 2009;169:977, consider using 
body mass index (BMI) to help predict energy intake

 
The “biomarker” BMI is related to error in the FFQ energy 
report. Obese persons under-report more

Confounders: Z

Breast 
Cancer

FFQ Energy 
Intake: Q

Body Mass 
Index: MT

True 
energy 

intake: T
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The first two points are raised by some work by reported Prentice and colleagues in the 
American Journal of Epidemiology in 2009. They considered a situation where they 
wished to use body mass index rather than a typical biomarker in their prediction of 
true dietary intake. Their context was the association of total energy intake to a variety 
of cancers. In the diagram here, we take breast cancer as one of their primary interests.  

The causal pathway diagram shown here is almost the same as the one that we have 
considered in this lecture, but there is one important difference. Notice that there is 
now an arrow leading from the true marker (or true body mass index) to the self-
reported intake. This is because of the often-observed phenomenon that obese persons 
tend to underreport their dietary intake more than the nonobese. In our models we 
have assumed no relation between the biomarker value and the measurement error.  

In these circumstances, as indicated in the title of this slide, the usual regression 
calibration method gives a biased estimate of the targeted log odds ratio. So when this 
situation occurs, the only unbiased method of estimation available to us is the new 
method, the fourth and last of the estimation methods that we described earlier.  

I should also mention that all four methods of testing the null hypothesis remain valid in 
this situation and that enhanced regression calibration remains the most powerful.  
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

  

Discussion

Sometimes the biomarker may be a confounder as well as a mediator!

Body Mass Index?

Prentice et al: Am J Epidemiol. 2009;169:977

The “biomarker” BMI could affect energy intake or could 
 mediate its effect. In such circumstances, it is unclear what to 

do

Breast 
Cancer

FFQ Energy 
Intake: Q

Body Mass 
Index?

True 
energy 
intake 


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Another point raised by the application considered by Prentice et al. is that there may 
sometimes be uncertainty regarding the direction of the causality. In the example where 
body mass index is in the position of the biomarker, it is not entirely clear whether it 
acts as a mediator of the effect of energy intake on breast cancer or whether it acts as a 
confounder. This dilemma is portrayed by the diagram in this slide.  

In this case it is unclear how to proceed. If body mass index were a mediator, then our 
target risk parameter should be the total effect of dietary intake on breast cancer and 
we could use the methods described in this lecture. However, if body mass index were a 
confounder we should be interested in a different target risk parameter—the effect of 
diet adjusted for body mass index—and then the estimation procedure would be 
different. If we cannot resolve the causal pathway question, then we cannot decide 
what to estimate!  
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







Discussion

Costs of including a biomarker

 
The methods described (except unadjusted and RC) all 
require that biomarker values can be obtained for any 
individual in the study

 
This requires storing biological samples on all 
individuals. The cost of taking the sample and storing it 
needs to be reckoned against the increased power that 
could accrue from their use

 
Cost of the assay is less crucial, since nested case- 
control designs can be used to analyze the data

 
Many prospective studies now incorporate biobanks 
allowing the use of the methods described
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An important practical question is that of the cost of including a biomarker in the study.  

To implement the methods described today, the investigator needs to be able to obtain 
a biomarker measurement from any person in the study. This means that biological 
specimens have to be stored for all participants. The cost of taking and storing the 
specimens needs to be weighed against the sample size savings that could accrue from 
their use.  

It's the taking and storing of the specimens that is crucial, and the cost of performing 
the assay is less crucial since, typically, the number of assays that are done can be 
drastically reduced without loss of power, by using a case-control design nested within 
the cohort study.  

Many prospective studies today are designed to include a blood or tissue bank, and in 
such cases the methods I have described may give very useful increases in statistical 
power for addressing questions of diet-health associations.  
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







Discussion

Can we measure all the important confounders?

 
The methods described all require that all important 
confounders of both dietary intake and the biomarker are 
identified and measured

 
Unfortunately, however hard we try, we can never be 
sure that we have identified and measured all of these 
confounders

 
Introducing the marker into the analysis introduces a 
new set of potential confounders

 
For this reason, extra care in the interpretation of results 
is required
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Perhaps the greatest challenge to the successful use of concentration biomarkers in the 
manner we have described is the challenge of adjusting for confounding. As soon as we 
enter a biomarker into the model, we introduce a potential new set of confounders, and 
we can never be sure that we know what these are. Thus, associations that we see may 
sometimes be spurious, as we will find out, to our cost if we try to build intervention 
programs based upon them. So extra care is needed in interpreting the results. 
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







Discussion

Do we have the necessary information to execute enhanced RC or the new method?

 
As shown in the CAREDS example, it is not a simple 
matter to set up the calibration equations needed to 
implement Enhanced RC or the new method.

 
Sometimes, as in that example, previous feeding studies 
and population studies may be available. Otherwise, 
special feeding or calibration studies will be required.

 
In addition the number of biomarkers known to provide 
good prediction of true usual intake are limited.

 
Prentice et al are currently conducting a large feeding 
study to identify new biomarkers and develop calibration 
equations for several foods and nutrients, as part of the 
WHI.
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Finally, as mentioned earlier, the modeling methods, enhanced regression calibration 
and the new method, require extra knowledge beyond what will be available from the 
study in question. In many cases, that knowledge may not exist and new feeding studies 
may be required to provide it. Prentice and colleagues are currently conducting a large 
feeding study to identify new biomarkers of dietary intake and to enable the 
development of new calibration equations for predicting a wider range of dietary 
intakes. If that study is successful, then the methods we have described today may 
become central to future nutritional epidemiology.  
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SUMMARY
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So, to summarize… 
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Summary

Summary

1. Usual Regression Calibration does not usually increase the power to 
detect diet-health outcome relationships.

2. Using biomarkers can sometimes increase power.

3. Simple methods such as Howe’s method or principal components 
can be used, and are sometimes successful, but (a) do not 
guarantee increase in power, and (b) can sometimes even reduce 
power!

4. More complex methods such as Enhanced Regression Calibration 
can yield important gains in power, but require considerable extra 
information regarding the relationship between the biomarker and 
dietary intake.

5. The methods require availability of biological specimens for the 
individuals in the study, and may be feasible in prospective studies 
that have incorporated biobanks.
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[No notes.] 
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QUESTIONS & ANSWERS
Moderator: Kevin Dodd

Please submit questions 
using the Chat function
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Thank you Dr. Freedman. We’ll now move on to the question and answer period of the 
webinar.



Measurement Error Webinar 11 Q&A 

Question: As related to the choice of confounders, Z, in the various models and 
how all of those work together, can the set of confounders be different 
for different parts of the modeling exercise?  

I think there would be a possible situation where you had different 
confounders for the marker intake model and from the health outcome 
model. In other words, there may be confounders which are important in 
the health outcome model which are not important in the marker intake 
model. And, in fact, that was a situation which we used in the CAREDS 
example, where we had confounders in the health outcome model, age 
and smoking, and they were not used in the marker intake model. We 
would have liked to use smoking in the marker intake model but we just 
didn’t have enough information about it. So in summary, yes, it is quite 
possible that there would be confounders which are relevant to the health 
outcome model but not to the marker intake model. (L. Freedman) 

 

 

And following in that same vein, are there ever some cases where there 
might be a role for some additional covariates that help with the 
prediction of, say, the biomarker but don’t actually come into the health 
outcome model? 

Yes, indeed, that is a possibility. And, of course, the prime example is the 
questionnaire reported intake, which comes into the prediction for the 
dietary intake,  but is not included as a variable in itself in the health 
outcome model. If there are several variables like that, they could all be 
entered into the prediction equation for dietary intake . The important 
condition is that  the risk of disease is conditionally independent from 
them given the true intake. And in that case, they can be used for 
predicting true intake and not included in the health outcome model. (L. 
Freedman) 

And that was motivated by two of the questions that came up. One, I 
think, was a good one, where the supposition that the same confounders 
might affect—I’m talking about markers or covariates for metabolism 
that might affect—concentration biomarkers might not affect the dietary 
intake. And so those additional metabolic covariates would probably be 
used in the biomarker model but not used to predict diet from the FFQ. 
Is that correct? 

That’s correct; they would not be used to predict diet from the FFQ. 
(However, if you wanted to use enhanced regression calibration and 
include the biomarker in the prediction of dietary intake, then those 



metabolic covariates might also enter such a prediction equation. ) (L. 
Freedman) 

 And then another question that’s related to this is: You had mentioned 
in a footnote that all of these models assume that the measurement 
error is not affected by the confounder, Z, and I think that kind of goes 
with the fact that you’re using regression calibration for these sorts of 
things. Can you give a little discussion of what might happen or how you 
might have tried to adjust these models if the measurement error in Q is 
affected by the confounders? 

If the measurement error, through Q, is affected by the confounders and 
you could measure the confounders, then you would be able to take it into 
account by including those confounders in the measurement error model. 
And if you did that, then you would largely overcome this problem. If you 
were not aware of it but they nevertheless did affect the measurement 
error in the self-report, then I would think that there would be a potential 
bias. But we haven’t studied how large those biases might be, and it is a 
concern that needs to be looked at. (L. Freedman)  

 Earlier on, when you were talking about the direct method, Howe’s and 
the PC method unadjusted, you showed a table—I think it was slide 27—
that showed that you were looking at odds ratios in going from the 10th 
to the 90th percentile of measured intake. Now, did those percentiles 
change depending on what you were using, whether you were using the 
principal component or whether you were using the Howe’s sum of the 
ranks as your variable? Or was that all based upon some standardized 
value of intake? 

For each variable, the variable itself was used, in the control group, to find 
out empirically what the percentiles were, the 10th and 90th percentiles, in 
the population. That’s why the control group was used, on the assumption 
of a fairly rare disease. And of course because in one case you’re using the 
self-report and in another case you’re using the Howe measure, which is a 
sum of ranks, and in another case you’re using principal components, 
which is a weighted sum of the biomarker and the self-report, each of 
them has different percentiles, but what’s common to them is that every 
time you are comparing the risk of disease of someone sitting at the 90th 
percentile compared to someone at the 10th percentile in the population, 
if people are ordered according to each of these variables. (L. Freedman)  



 Can you talk a little bit about the possibility of extending these methods 
to apply to some non-FFQ self-report instruments like food records or 24 
hour recalls as the measured dietary exposure that’s not the biomarker? 

I think they could be used equally well in that situation. The only proviso is 
that the external information is available, if we’re talking about the 
modeling methods. And generally speaking, when it comes to doing 
population studies and we need to know what the distributions of these 
intakes reported on these instruments are in the population, generally 
speaking, apart from NHANES, where we have 24 hour recalls, I don’t think 
there are so many population studies which use other sorts of self-reports. 
So we have 24 hour recalls. It could certainly be done for that. And food 
records I think would be a bit more problematic, but there may be some 
studies which have that sort of information as well. So, in principle, yes, it 
could be applied equally well to other sorts of instruments. Whether or 
not it could be used in the case where there are episodically consumed 
foods, I don’t know. One may have to do more sophisticated things along 
the lines that Victor Kipnis has already talked about and will talk about in 
the next lecture as well. (L. Freedman) 
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Thank you very much, Larry, and thanks to our audience for joining today’s webinar.  
Please join us next week for the last webinar in our series, in which Dr. Victor Kipnis will 
discuss assessing diet and health relationships using a short-term unbiased dietary 
instrument, with a focus on risk models with multiple dietary components.   
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