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Hello and welcome to the seventh session in the Measurement Error Webinar Series.  
I’m Amy Subar, a nutritionist with the Risk Factor Monitoring and Methods Branch at 
the U.S. National Cancer Institute and I’ll be moderating today’s webinar, in which we’ll 
continue with our focus on examining diet and health relationships.   

Before we get started with today’s presentation, please note that the webinar is being 
recorded so that we can make it available on our Web site. All phone lines have been 
muted and will remain that way throughout the webinar. There will be a question and 
answer session following the presentation; you can use the Chat feature to submit a 
question. 

A reminder: You can find the slides for today’s presentation on the Web site that has 
been set up for series participants. The URL is available in the Notes box at the top left 
of the screen. Other resources available include the glossary of key terms and notation, 
and the recordings of the preceding webinars.   

Now I’d like to introduce the presenter for today’s webinar. Doug Midthune is a 
mathematical statistician in the Biometry Research Group, Division of Cancer 
Prevention, at the National Cancer Institute. He is an integral member of the 
Surveillance Measurement Error Group at the National Cancer Institute, helping to 
develop the NCI method for modeling episodically consumed foods. Recently, he has 
played an important role in the extension of the method to accommodate simultaneous 
modeling of multiple nutrients and foods, with applications to both estimation of usual 
intake distributions and examination of diet and health relationships. Today Doug will 
discuss methods of assessing diet and health relationships using a food frequency 
questionnaire as the main dietary instrument and with a focus on non-episodically 
consumed dietary components. Doug.   

Today’s webinar is about “assessing diet-health relationships.” Last week, Larry 
Freedman discussed the problems caused by measurement error when trying to 
estimate diet-health relationships. Today I’m going to talk about methods that can be 
used to address some of these problems. 

Since this is the first webinar on this topic, I’ll be focusing on relatively simple methods 
that can be used when the dietary variables are consumed nearly every day by nearly 
everyone. I’m also going to focus on the case when the main dietary instrument is a 
food frequency questionnaire, which is the case for most large cohort studies. 

Future webinars will address more complex methods that may be required when some 
of the dietary components are episodically consumed, or when the main instrument is a 
24-hour dietary recall. (D. Midthune) 
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Slide 2 

This webinar series is dedicated to the memory of Arthur Schatzkin, a colleague who 
collaborated with us for many years on the problem of measurement error in dietary 
assessment.
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And this is a list of the many people involved in this project.
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Objectives

Learning objectives

Understanding:

 
That measurement error leads to bias in 
estimated diet-health associations

 
Concepts involved in regression calibration, a 
method to correct for this bias

 
The role of calibration studies in regression 
calibration

 
Learning how to apply regression calibration in 
diet and health studies
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The learning objectives for this webinar are: first, to understand that measurement 
error leads to bias in estimated diet-health associations; second, to understand the 
concepts involved in regression calibration, which is a method to correct for this bias; 
third, to understand the role of calibration studies in regression calibration; and, finally, 
to learn how to apply regression calibration in diet and health studies. 
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Introduction

Main results on impact of measurement error

 

From webinar 6,

When there is a single dietary exposure measured 
with error in a diet-health model:

 
1) Estimated diet-health relationship (risk) is 

attenuated (underestimated)

2) Power to detect relationship is decreased

3) Statistical tests are still valid

 
Same conclusions seem to hold approximately when 
several dietary exposures are included in a model

In this webinar we will (mostly) address problem 1)
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I’ll begin with a summary of the main results from last week. We learned that when 
there is a single dietary exposure measured with error in a diet-health model, three 
things happen. First, the estimated diet-health relationship (or risk due to exposure), is 
attenuated, or underestimated. Second, the power to detect the relationship is 
decreased. And, third, although the power is decreased, the statistical tests used to test 
for the relationship are still valid. 

We also learned that these same conclusions seem to hold approximately when there 
are several dietary exposures included in the diet-health model. 

In this webinar we’ll focus mostly on the first problem and talk about ways to adjust 
attenuated risk estimates to make them approximately unbiased.
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Introduction

Why adjust the risk estimate?

Unadjusted estimates will underestimate

True health risk due to unhealthy eating

True health benefit due to healthy eating

As a result:

 
Public health impact of dietary change would 
be underestimated

 
Health officials could mistakenly ignore the 
potential impact
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Why do we need to adjust the risk estimate if the statistical tests are still valid?  The 
reason is that the unadjusted estimates will underestimate the true health risk due to 
unhealthy eating or true benefit due to healthy eating.  

As a result, even if a risk or benefit were found to be statistically significant, the public 
health impact of dietary change would be understated and health officials could 
mistakenly ignore the potential impact.
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Introduction

Methods of adjusting the risk estimate

Regression calibration

SIMEX

Maximum likelihood

Multiple imputation

Moment reconstruction

… and more!



 

 

 

 

Slide 7 

There are many methods to adjust attenuated risk estimates. They include regression 
calibration, simulation extrapolation, maximum likelihood, multiple imputation, and 
moment reconstruction. 

We’re going to focus on regression calibration, because it is relatively simple to use and 
performs well in many situations. It’s also a method that is commonly used in diet-and-
health studies.
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REGRESSION CALIBRATION 
FOR UNIVARIATE 
EXPOSURES
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We’ll begin with the simplest case, which is when there is a single dietary variable 
measured with error.
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Regression calibration for univariate exposures 

Linear equations and linear functions

 
The equation for a line in                                 
two dimensions is

Y = a0 + a1X

The equation for a line in k dimensions is

 
Y = a0

      

+ a1X1 + a2X2 + …
 

+ akXk

This relationship can be expressed as a function
f(Y) = a0

      

+ a1X1 + a2X2 + … + akXk

A function of this form is called a linear function

0

1

2

3

4

0 1 2 3 4
X

Y
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But, first, we’ll briefly review linear functions. You’ll remember that the equation for a 
line in 2-dimensional space is: Y = a0 + a1X. 

Similarly, the equation for a line in (k+1)-dimensional space is: Y = a0 + a1X1 + a2X2, etc.  
This linear relationship can be expressed as a function, where we say that f(Y) = a0 + 
a1X1, etc. 

A function having this form is called a linear function. We are going to make extensive 
use of linear functions, so I wanted to remind everyone what they are.
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Regression calibration for univariate exposures 

Risk model

Risk model (logistic regression): 

0 T Z1 1 Zp plog{Odds(Y=1)} = α α T α Z  + ...  α Z  

 
Y = health outcome variable (0 or 1)

 
Odds(Y=1) = Prob(Y=1) / Prob(Y=0)

 
T = true dietary intake

 
Z1

  

, …, Zp = other variables in disease model

 
Z = {Z1, … ,Zp

 

}

T, Z1, ..., Zp = regression coefficients              
= log odds ratios



 

 

 

 

Slide 10 

To assess a diet-health association, we need to specify a diet-health model, which I will 
call the “risk” model. Risk models relate a health outcome to one or more explanatory 
variables, sometimes called “covariates.” There are different types of risk models for 
different types of health outcomes. Today we’re going to talk about the logistic 
regression risk model.   

In logistic regression, the health outcome is a binary variable, Y, that equals 0 or 1, 
indicating whether or not some health event has occurred. The “odds” for Y is defined as 
the ratio of the probability that the event has occurred to the probability that it has not 
occurred. Our logistic regression model assumes that the log of the odds is equal to a 
linear function of the explanatory variables. 

In our example, the explanatory variables are a single dietary exposure called T, and a 
set of other variables called Z1, Z2, etc. For convenience, I’ll refer to these other variables 
collectively as “Z.”  Z comprises other risk factors that we want to include in our model; 
for example, age and smoking status. We assume that T is measured with error and that 
Z is measured exactly. 

The parameters αT, αZ1, etc. are called regression coefficients. They quantify the 
relationship between the explanatory variable and the health outcome. In logistic 
regression, the regression coefficients represent log odds ratios. These parameters are 
unknown, and the goal is to estimate them, using the data from our study.
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Regression calibration for univariate exposures 

Risk model

Risk model: 
 

0 T Z1 1 Zp plog{Odds(Y=1)} = α α T α Z  + ...  α Z  
Q

 
 

Problem:

We are unable to measure true intake T

 
Instead, we obtain reported intake Q which is 
subject to measurement error

 
If we use Q instead of T in the risk model, the 
estimate of T will be biased (attenuated)
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If we could measure true intake, T, in our study, fitting the risk model would be 
straightforward. The problem is that we can’t measure true intake. We can only 
measure reported intake that is subject to measurement error. In today’s talk, we will 
focus mainly on the case when reported intake is obtained from a food frequency 
questionnaire, which we call Q. 

If we simply use Q instead of T in our risk model, our estimate of the log odds ratio, αT, 
will be biased.  

The log odds ratios for the other covariates, Z, may also be biased, even though they 
were measured without error. This results from a phenomenon known as “residual 
confounding,” which was discussed in webinar 6. 

This means that even if the main exposure of interest is measured exactly, we still need 
to be concerned about measurement error in the other variables.
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Regression calibration for univariate exposures 

 

Regression calibration

Risk model: 

0 T Z1 1 Zp plog{Odds(Y=1)} = α α T α Z  + ...  α Z  

(T|Q,Z)
E

 
Regression calibration method:

 
Step 1: Calculate E(T|Q, Z) = conditional 
expectation of T given Q and Z

E(T|Q, Z) is the “predicted value” of T given 
Q and Z

Step 2: Replace T with E(T|Q, Z) in risk model
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We don’t want biased estimates of our log odds ratios, so we’re going to use regression 
calibration to correct for this bias. Regression calibration is a two-step method. 

The first step is to calculate the conditional expectation of true intake, T, given the 
observed data, Q and Z. 

Conditional expectation is a statistical term that may not be familiar to everyone. It can 
be thought of as a prediction of T based on Q and Z. In fact, the conditional expectation 
is known to be the best predictor of T, in the sense that it has the smallest mean 
squared error of any predictor that is based on Q and Z. 

In this talk, I will use the terms “conditional expectation” and “predicted value” 
interchangeably. 

So, step 1 is to calculate the predicted value of T, and step 2 is to replace T with its 
predicted value in the risk model and then perform the standard logistic regression 
analysis.
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0 T Z1 1 Zp pl g{Odds(Y=1)} = α α T α Z  + ...  α Z 

E(T|Q,Z)
o 


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Regression calibration for univariate exposures 

Regression calibration

Risk model: 

Regression calibration assumption:

 
Q has “nondifferential

 
error”

 
with respect to 

disease Y

 
Q has no information about Y beyond that 
provided by T and Z

Under this assumption, regression calibration 
 estimates are (approximately) unbiased
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Replacing T by its conditional expectation is justified under the assumption that Q has 
nondifferential error with respect to disease, Y. This means that Q contributes no 
additional information about disease risk beyond that already provided by T and Z. 

This assumption is usually considered reasonable for prospective cohort studies, where 
the dietary data are collected at the beginning, before any disease has occurred. It is 
sometimes considered questionable for retrospective case-control studies, where the 
dietary data are collected after the disease has occurred. 

When Q has nondifferential error, regression calibration leads to approximately 
unbiased estimates of the log odds ratios.
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Regression calibration for univariate exposures

How do we calculate E(T|Q, Z)?







 
In order to predict T, we need to develop a 
“prediction equation”

 
Example: linear prediction equation

0 Q Z1 1 Zp pE(T|Q, Z)  =  λ + λ Q + λ Z  + ... + λ Z

 
If T were observable in a sample of participants, 
could estimate the parameters in prediction 
equation by regressing T on Q and Z
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The obvious question at this point is, “How do we calculate this conditional expectation 
or predicted value?” Well, we need to develop a “prediction equation.” 

The simplest example is a linear prediction equation, where the predicted value is a 
linear function of Q and Z. If we were able to observe T in sample of participants, we 
could estimate the parameters in the prediction equation by regressing T on Q and Z.
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Regression calibration for univariate exposures

How do we calculate E(T|Q, Z)?









 
Instead of observing T, we observe a “reference 
measure” that we call R

 

 –
–
–

Assumption: R is unbiased for T

 
R = T + e

 
e is random error with mean zero

 
e is uncorrelated with T, Q and Z

 
Under this assumption, E(R|Q, Z) = E(T|Q, Z)

 
Estimate prediction equation by regressing R on 
Q and Z in a sample of participants  
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Since it is not possible to observe T, we need instead a “reference measure,” which we 
call R. We assume that this reference measure is unbiased for true intake, T, at the 
individual level. This means that for any individual, R is equal to true intake, T, for that 
individual plus some random within-person error, where the random error has mean 
zero and is unrelated to T, Q, and Z.   

Under this assumption, the conditional expectation of R given Q and Z is equal to the 
conditional expectation of T given Q and Z. This means that we can estimate the 
parameters in the prediction equation by regressing R on Q and Z in a sample of 
participants.
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Regression calibration for univariate exposures

Calibration studies

 
Prediction equation (calibration equation) is 
developed in a sample on which the reference 
instrument is measured

 
A sample collected for this purpose is called a 
“calibration study”

 
We will learn more about calibration studies later 
in this webinar
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The prediction equation, sometimes called the “calibration equation,” is developed in a 
sample of individuals on which the reference instrument is measured. A sample 
collected for this purpose is called a “calibration study,” or sometimes a “validation 
study.” 

We will learn more about calibration studies in the third section of this webinar.
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Regression calibration for univariate exposures

Summary of regression calibration

Regression calibration involves 2 regressions:

 
Step 1: Regress R on Q and Z to get 
prediction equation E(T|Q, Z)

 
Step 2: Regress health outcome Y on      
E(T|Q, Z) and Z

Regression calibration makes 2 assumptions:

Q has nondifferential error with respect to Y

R is unbiased for T
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In summary, regression calibration involves two regressions. In step 1, we regress R on 
Q and Z to estimate the parameters in the prediction equation. In step 2, we regress the 
health outcome, Y, on the predicted value of T and Z.  In our examples, this second 
regression is logistic regression. 

In addition, regression calibration makes two assumptions. First, it assumes that 
reported intake Q has nondifferential error with respect to health outcome Y. Second, it 
assumes that reference measure R is unbiased for true intake T. 

Note that this second assumption is a “working assumption” that may or may not be 
strictly true for any given reference measure. We need to make such an assumption, 
though, in order to make any progress in correcting for measurement error.



Dietary components that are consumed daily by most persons18




 

 –

–

Regression calibration for univariate exposures

Linear regression calibration

We will focus on linear regression calibration

In linear regression calibration:

 
Predicted value of T is a linear function of Q 
and Z

0 Q Z1 1 Zp pE(T|Q, Z)  =  λ + λ Q + λ Z  + ... + λ Z

Parameters in prediction equation (λ0, …, λZp)
 are estimated by linear  regression of R on Q 

and Z
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Today, we are focusing on linear regression calibration. In linear regression calibration, 
the predicted value of T is a linear function of Q and Z. Further, the regression 
parameters in the prediction equation are estimated by linear regression of R on Q and 
Z. 

The underlying assumption is that the conditional means of both T and R are 
approximately linear functions of Q and Z. These approximations are often quite 
adequate for our needs. This is particularly true when the dietary component is 
consumed nearly every day by nearly everyone, since in this situation we can consider 
our data to be continuous. There are situations, however, where we may need to 
consider more complicated nonlinear prediction functions.
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Regression calibration for univariate exposures

Potential problem with linear regression calibration

 
Sometimes we want to fit a risk model where T 
is on a transformed scale

Risk model:

0 T Z1 1 Zp plog{Odds(Y=1)} = α α g(T) α Z  + ...  α Z  

Examples of transformation g(T):

 
Log transformation:  g(T) = log(T)
Square root transformation: g(T) = T
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I wanted to mention a potential problem with linear regression calibration. Sometimes 
researchers want to fit a disease model where T is on a transformed scale. This is 
particularly true if the data are highly skewed. Here, we show a risk model where T has 
been transformed using a function, g. 

Examples of possible transformations are the log transformation and the square root 
transformation. The log transformation is the most commonly used transformation and 
is particularly appropriate if you have reason to believe that the effect of T on Y is 
multiplicative rather than additive.
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Regression calibration for univariate exposures

Potential problem with linear regression calibration

Risk model:

0 T Z1 1 Zp plog{Odds(Y=1)} = α α g(T) α Z  + ...  α Z  

Prediction equation is also on transformed scale

0 Q Z1 1 Zp pE{g(T)|Q, Z}  =  λ + λ g(Q) + λ Z  + ... + λ Z

 
Estimate parameters in prediction equation by 
regressing g(R) on g(Q) and Z
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In linear regression calibration, if the risk model is on a transformed scale, then the 
prediction equation must also be transformed. 

In the prediction equation, the predicted value of g(T) is a linear function of g(Q) and Z.  
We estimate the parameters in the prediction equation by regressing g(R) on g(Q) and Z 
in the calibration study.
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Regression calibration for univariate exposures

Potential problem with linear regression calibration

 
Assumption for reference instruments

E(R|Q, Z) = E(T|Q, Z)

 
After transformation, this equality is only 
approximate

E{g(R)|Q, Z} ≈
 

E{g(T)|Q, Z}

 
In practice, approximation is usually assumed 
good enough for dietary components consumed 
(nearly) every day
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A critical assumption for regression calibration is that the reference instrument and true 
intake have the same conditional expectation. This allows us to estimate the prediction 
equation by regressing R on Q and Z. The problem is that after transformation this 
equality no longer holds. It can be shown that the conditional expectations of g(R) and 
g(T) are approximately equal, but how good this approximation actually is varies and is 
subject to many factors. 

Nevertheless, in practice, it is usually assumed that this approximation is good enough 
for dietary components that are consumed every day, and we will proceed under this 
assumption.
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Regression calibration for univariate exposures

Example: dietary fat and breast cancer

 
NIH-AARP Diet and Health Study

Observational cohort (1995-present)

 
550,644 participants

 
Food frequency questionnaire (FFQ = Q)

Calibration sub-study (1996)

 
1942 participants 

Two 24-hour dietary recalls (24HR = R)
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Now we’re going to look at an example using regression calibration in the National 
Institutes of Health/AARP Diet and Health study, which I’ll call the AARP study. The 
AARP study is a prospective cohort of about 550,000 participants who were 
administered a food frequency questionnaire at baseline. The study includes a 
calibration substudy of about 2,000 participants who in addition to the FFQ also 
completed two nonconsecutive 24-hour dietary recalls, which we are going to use as our 
reference instrument.
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Regression calibration for univariate exposures

Example: dietary fat and breast cancer

Thiebaut et al. (J Nat Cancer Inst, 2007)

Nested case-control analysis

 
3501 invasive breast cancer cases, with 4 
matched controls per case:

Year of entry (1995, 1996, 1997)

Age at entry (+/- 1 year)

Person-years at risk (≥ years for case)

Hormone use (never/former, current)
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In a 2007 article, Anne Thiebaut and her colleagues reported a statistically significant 
association between dietary fat intake and the risk of invasive breast cancer in women 
in the AARP study. We will use their analysis as a basis for our examples. We note, 
however, that we have made many changes and simplifications, and our examples our 
meant only to illustrate the methods we are discussing. 

In the original analysis, the authors used a Cox regression risk model, which is often 
used to analyze the type of censored data that are obtained from observational studies. 
To keep our example simple, we are going to use a logistic regression risk model and fit 
it using a nested case-control analysis. This involves selecting cases and matched 
controls from our study and then performing logistic regression on that subset. 

Our data consisted of 3,501 invasive breast cancers cases, plus 4 matched controls for 
each case. The controls were matched on a variety of factors, including age and person-
years at risk.
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Regression calibration for univariate exposures

Example: dietary fat and breast cancer

 
Logistic regression of breast cancer status (Y) 
on log total fat intake (T)

 
Other covariates (Z)

  
Body mass index (< 25, 25-30, ≥ 30)

 
Age at first birth / number of children 
(nulliparous, <30 / 1-2, <30 / 3+, ≥30 / 1+)

–
 

Hormone use (never/former, current)

 
Age at entry
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We have a logistic regression risk model where the health outcome is breast cancer 
status and the dietary variable is the log of total fat intake. The other risk factors 
included in the model are body mass index, age at first birth, number of children, 
hormone use, and age at entry into the study.
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Regression calibration for univariate exposures

Example: dietary fat and breast cancer

 
Regression calibration:

 
Step 1: Estimate prediction equation by linear 
regression of R on Q and Z in calibration study

2 3

1 2 3

E(T|Q, Z)  =  4.5 + 0.28×Q
                      +  0.06×BMI  + 0.04×BMI
                      +  0.01×AFB   0.03×AFB  + 0.05×AFB
                      +  0.01 Hormone  0.002 Age


  

 
Use prediction equation to predict intake for 
each subject in main study
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We fit the model using regression calibration. Step 1 is to estimate the prediction 
equation by linear regression of our reference instrument on FFQ-reported log intake of 
fat and the other covariates in the calibration study. In our case, the reference 
instrument is the log of the mean reported fat intake on the two 24-hour dietary recalls. 

Here is the prediction equation we obtained. We then used this equation to predict 
intake for all of the subjects in our main study.
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Regression calibration for univariate exposures

Example: dietary fat and breast cancer

Regression calibration:

 
Step 2: Logistic regression of Y on E(T|Q,Z) and 
Z in main study

2 3

1 2

log{Odds(Y=1)} = 2.4 + 0.11 E(T|Q, Z)
                      +  0.06×BMI  + 0.17×BMI
                       0.26×AFB   0.36×AFB  + 0.01×AFB
                      +  0.03 Hormone + 0.004 Age

 

 
 

3

 
Estimated log odds ratio:           = 0.11
Estimated odds ratio:   exp(     ) = 1.12

Tα̂

Tα̂
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For step 2 of regression calibration, we performed logistic regression of breast cancer 
status on the predicted value of true log fat intake and other covariates.  

Here are the results of that logistic regression. The estimated log odds ratio for fat 
intake is equal to 0.11. This corresponds to an estimated odds ratio of 1.12. The odds 
ratio is a measure of the association between fat intake and the risk of breast cancer. 

In order to make the odds ratio easier to interpret, we’ve scaled our estimates so that a 
unit increase in log fat intake corresponds to a doubling of fat intake on the original 
scale. Then an odds ratio of 1.12 can be interpreted as a 12 percent increase in the risk 
of developing breast cancer associated with a doubling of fat intake. This is an example 
of what is called a “multiplicative” effect. Every time intake is multiplied by two, the risk 
of breast cancer increases by 12 percent.
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Regression calibration for univariate exposures 

Bootstrap standard error for log odds ratio



  
Bootstrap: sampling with replacement 

Both calibration data and disease model data
 

Calibration
Sub-study

Sample 1

Calibration
Sample 1

Standard deviation of      = bootstrap s.e.

Estimated a and bootstrap s.e.

Sample 2 Sample N

Calibration
Sample 2

Calibration
Sample N

Main
Study

Tα̂ Sample 1 Sample 2 Sample N
Tα̂ Tα̂ Tα̂

Tα̂

Thanks to Anne-Claire Vergnaud
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The logistic regression procedure in SAS, or any other statistical software, will print out 
an estimate of the standard error of the log odds ratio, and a 95 percent confidence 
interval for the odds ratio. Unfortunately, these standard errors and confidence 
intervals will not be correct for regression calibration estimates. This is because 
regression calibration is a two-step procedure, and the logistic regression standard 
errors in step 2 don’t incorporate the uncertainty due to estimating the prediction 
equation parameters in step 1. 

The bootstrap method is a very general and commonly used method for estimating 
standard errors that can be applied in such two-step procedures. In webinar 4, Kevin 
Dodd gave a general description of the bootstrap method, and here we’re going to 
describe how it applies to regression calibration. 

As before, we sample with replacement from our original data, but this time we need to 
resample from both the main study and the calibration study. 

Here we see our analysis of the original data. We used the main study and calibration 
substudy to estimate the log odds ratio. 

To calculate the standard error, we sample with replacement from both the main study 
and calibration study. These “bootstrapped” samples are meant to mimic data from a 
new study. We use these new data to calculate a “bootstrapped” estimate of the log 
odds ratio. We repeat this many times and get many different bootstrapped estimates. 

Finally, we calculate the standard deviation of these bootstrapped estimates to obtain 
the estimated standard error of our log odds ratio. 

Note that the estimate of the log odds ratio comes from the original study. We are only 
using the bootstrapped samples to estimate its standard error.
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




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

Regression calibration for univariate exposures

Confidence intervals

Estimated log odds ratio: α̂T            = 0.11

Bootstrap s.e. log odds ratio: s.e. αT    = 0.10 ˆ

Estimated odds ratio: exp α̂T   = 1.12
95% confidence interval for log odds ratio:

 α   1.96 s.e.  α   = ˆ ˆT T 0.09, 0.31   
95% confidence interval for odds ratio:

 exp{0.09},  exp{0.31}  = 0.91, 1.36
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Once we’ve calculated the standard error of the log odds ratios, we can calculate 
confidence intervals. 

Since the estimated log odds ratio has an approximately normal distribution, we can 
calculate an approximate 95 percent confidence interval by adding and subtracting from 
the estimate a value equal to 1.96 times its standard error. 

In order to get 95 percent confidence intervals for the odds ratio, we take the endpoints 
of the confidence interval for the log odds ratio, and exponentiate them. As you can see, 
the confidence interval for the odds ratio includes the value 1, which represents no 
association. This means that we can’t reject the null hypothesis that there is no 
association between fat intake and breast cancer risk in this particular example.
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Regression calibration for univariate exposures

Rosner’s method for linear regression calibration

Rosner et al. (Am J Epidemiol, 1990)
 

From previous lecture (lecture 6):







 
Expected log odds ratio estimate is attenuated

 Q Q TˆE α = λ α

T = true log odds ratio
Q = attenuation factor (from prediction equation)

  
 

 
Solution: divide attenuated log odds ratio by Q

T Q Qˆ ˆα  =  α / λ
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Now I’d like to look briefly at an alternative method for applying linear regression 
calibration that was proposed by Bernard Rosner and his colleagues back in 1990. In 
webinar 6, we saw that when reported intake, Q, is measured with error, the expected 
value of the estimated log odds ratio is biased by a multiplicative factor called the 
“attenuation factor.” This attenuation factor is equal to the regression coefficient for Q 
in the prediction equation. So a simple way to “de-attenuate” the attenuated log odds 
ratio is to divide it by the attenuation factor.
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







 

Regression calibration for univariate exposures

Rosner’s method for linear regression calibration

 
Step 1: Same as step 1 for regular method

Prediction equation:
 

2 3

1 2

E(T|Q, Z)  =  4.5 + 0.28×Q
                      +  0.06×BMI  + 0.04×BMI
                      +  0.01×AFB   0.03×AFB  + 0.05×AFB
                      +  0.01 Hormone  0.002 Age


  

3

λ̂Q  = 0.28Estimated attenuation factor:

Standard error: s.e.(λ̂Q ) = 0.03
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Rosner’s method can also be described as a two-step method. The first step is the same 
as before—estimate the parameters in the prediction equation using linear regression 
calibration of the reference measure R on Q and Z. 

From this linear regression, we get an estimate of the attenuation factor and also the 
standard error of this estimate, which will be useful later.
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







Regression calibration for univariate exposures

Rosner’s method for linear regression calibration

 
Step 2: Logistic regression of Y on Q and Z in  
the main study

2 3

1 2

log{Odds(Y=1}) = 1.7 + 0.03 Q
                      +  0.08×BMI  + 0.18×BMI
                       0.26×AFB   0.37×AFB  + 0.02×AFB
                      +  0.03 Hormone + 0.003 Age

 

 
 

3

 

 

Attenuated log odds ratio:
Qα̂  = 0.03

Standard error: Qˆs.e.(α ) = 0.03
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Step 2 is to fit a logistic regression of health outcome Y on Q and Z in the main study to 
estimate the attenuated log odds ratio.  

Here are the results of that logistic regression. The attenuated log odds ratio is 0.03, 
with a standard error of 0.03. Again, this standard error will be useful later.
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

Regression calibration for univariate exposures

Rosner’s method for linear regression calibration

 
Step 3: Divide attenuated log odds ratio by 
attenuation coefficient

T Q Q
ˆˆ ˆα   =  α  / λ   =  0.03 / 0.28  =  0.11

 
Rosner’s

 
method and regular linear regression 

calibration: estimates are the same
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Finally, we divide the attenuated log odds ratio by the attenuation factor. The resulting 
estimate is often called the “de-attenuated” log odds ratio. In our example, the de-
attenuated log odds ratio equals 0.11. 

Notice that this estimate is the same as in our earlier example. This is true in general.  
Rosner’s method and regular linear regression calibration give exactly the same 
estimate of the log odds ratio.
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Regression calibration for univariate exposures 

Rosner’s method for linear regression calibration





 
Step 4: Estimate standard error using delta 
method

Q Q Q
T 2

Q Q

2 2ˆˆ ˆs.e.(α ) α s.e.(λ )
ˆs.e.(α )  + ˆ ˆλ λ

=   0.09

   
       

   
               

 
Bootstrap and delta method standard errors are 
similar but not exactly the same
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Rosner’s method uses the delta method to estimate the standard error of the log odds 
ratio. Like the bootstrap method, the delta method can be used to estimate standard 
errors in two-step procedures. I won’t describe the delta method in general, but in this 
application it leads to a fairly simple formula based on the estimated values of the 
attenuated log odds ratio, the attenuation factor, and their standard errors. 

I want to note that the bootstrap and delta method standard errors are generally 
similar, but they are not exactly the same.
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Regression calibration for univariate exposures

Example: dietary fat and breast cancer

Dietary fat intake and breast cancer risk in NIH-AARP

Correction for 
Measurement Error

Log Odds 
Ratio (s.e.)

Odds Ratio 
(95% CI)

Uncorrected 0.03 (0.03)

 

1.03 (0.98, 1.09)

  Regression calibration 0.11 (0.10)

 

1.12 (0.93, 1.35)

  Rosner’s method

 

0.11 (0.09)

 

1.12 (0.94, 1.33)
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Here is a table summarizing our analysis of dietary fat and breast cancer risk. We see 
that the uncorrected estimate of the odds ratio is much smaller than the regression 
calibration estimates. We also see that the versions of regression calibration give the 
same estimate of the odds ratio but give slightly different estimates of the 95 percent 
confidence intervals. Notice also that none of estimated odds ratios are statistically 
significantly different from 1, since all the confidence intervals include the value 1.
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Regression calibration for univariate exposures 

Summary of Rosner’s method







 
Advantage: standard errors can be computed 
quickly and easily

 
Limitation: Only applies when the regression 
calibration model is linear

 
Next webinar (webinar 8) will focus on situation 
where regression calibration model is nonlinear
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The main advantage of Rosner’s method is that it allows standard errors to be 
computed quickly and easily. A limitation is that the method only applies when the 
regression calibration model is linear. The regular method can be extended to nonlinear 
models, and in next week’s webinar we’ll see an example where the regression 
calibration model is nonlinear. 

Now, I want to mention that in an earlier version of these slides that was available 
online, I included a second limitation to Rosner’s method, which stated that the method 
only corrects the odds ratio for the variable measured with error and that the odds 
ratios for Z are still biased. I realized, however, that this statement was incorrect. There 
is a slightly more complex version of Rosner’s method than the one I described here that 
does produce unbiased estimates of the odds ratios for Z. 
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REGRESSION CALIBRATION FOR 
MULTIVARIATE EXPOSURES
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Now I’m going to talk about regression calibration when there are multiple variables 
measured with error. I’ll focus on the case of two variables measured with error, but the 
methods extend easily to more than two variables.
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Regression calibration for multivariate exposures

Motivation: energy-adjusted analysis




 –


 –

–

 
Researchers often perform an “energy-adjusted”
analysis by adding total energy intake to model  

Sometimes, the main exposure variable is also modified

 
Example: Percent energy from fat

Reasons for energy adjustment:

 
Interest in association between dietary composition 
and health

 
Energy-adjustment often decreases measurement 
error in reported intake
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I’ll begin with a motivating example that was also discussed in webinar 6. In nutritional 
epidemiology, researchers often perform what are called “energy-adjusted” analyses, in 
which total energy intake is included as a covariate in the risk model. Sometimes the 
main exposure variable is modified as well. An example of such a modified variable is 
percent energy from fat, as opposed to absolute fat intake. 

There are two main reasons for doing an energy-adjusted analysis. The first is that the 
researcher may be interested in the association between dietary composition and 
health. For example, the researcher may be interested in the proportion of fat in the 
diet rather than the absolute amount. The second reason, which was discussed in 
webinar 6, is that energy adjustment often decreases the measurement error in 
reported intake.
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Regression calibration for multivariate exposures 

Regression calibration with two dietary exposures









 
Disease model:

Replace T1 and T2 with  E(T1|Q1,Q2,Z) and 
 E(T2|Q1,Q2,Z)      

E(T1|Q1,Q2, Z) is the predicted value of T1
    given reported intakes Q1 and Q2 and  

explanatory variables Z1  , …, Zp

   

 

 

 

 
Confidence intervals for odds ratios calculated 
using the bootstrap method, exactly as 
described for a single exposure

0 T1 1 T2 2 Z1 1 Zp plog{Odds(Y=1)} α α T α T α Z  ... α Z     
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Here is a risk model that has two dietary exposures, T1 and T2, plus other covariates, Z.  
Regression calibration with two dietary exposures is very similar to regression 
calibration with a single dietary exposure. 

First, calculate the conditional expectations of T1 and T2 given Q1, Q2, and Z. Then 
replace T1 and T2 in the risk model with their predicted values and perform the standard 
logistic regression analysis. 

Confidence intervals for the estimated odds ratios are calculated using the bootstrap 
method, exactly as described for a single dietary exposure.
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Regression calibration for multivariate exposures 

Linear regression calibration






    

 
Prediction equations:

1 1 2 01 Q11 1 Q21 2 Z11 1 Zp1 pE(T |Q ,Q ,Z) = λ  + λ Q  + λ Q  + λ Z  + ... + λ Z

2 1 2 02 Q12 1 Q22 2 Z12 1 Zp2 pE(T |Q ,Q ,Z) = λ  + λ Q  + λ Q  + λ Z  + ... + λ Z

Reference measures R1 and R2 for T1 and T2

Linear regression of R1 and R2 on Q1, Q2 and Z 
in  calibration study     
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As before, prediction equations must be developed to calculate the predicted values.  
Notice that both Q1 and Q2 are in the prediction equation for T1 and that both are in the 
prediction equation for T2. 

Since we can’t observe T1 or T2, we need two reference measures, called R1 and R2, that 
we assume are unbiased for the true exposures. We then estimate the prediction 
equations using linear regression of R1 and R2 on Q1, Q2 and Z in the calibration study.
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

Regression calibration for multivariate exposures 

Rosner’s method for linear regression calibration

0 T1 1 T2 2 Z1 1 Zp plog{Odds(Y=1)} α α T α T α Z  ... α Z     

1 1 2, 01 Q11 1 Q21 2 Z11 1 Zp1 pE(T |Q ,Q Z) = λ  + λ Q  + λ Q  + λ Z  + ... + λ Z

2 1 2, 02 Q12 1 Q22 2 Z12 1 Zp2 pE(T |Q ,Q Z) = λ  + λ Q  + λ Q  + λ Z  + ... + λ Z

From lecture 6, log odds ratios estimated using 
Q1 and Q2 actually estimate:

  Q1

 

=  Q11  1

 

+ Q12  2

Q2

 

=  Q22  2

 

+ Q21  1
contamination

attenuation
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Rosner’s method also extends to the case where there are multiple variables measured 
with error. At first, the extension might seem complicated, but I’ll try to convince you 
that it’s really pretty simple. 

We start with our risk model and two prediction equations. We saw in last week’s 
webinar that if we don’t correct for measurement error, the log odds ratios estimated 
using Q1 and Q2 actually estimate a mixture of the true log odds ratios. We have 
attenuation of the true effect of the dietary exposure, combined with contamination 
from the effect of the other dietary exposure. The attenuation factors and 
contamination factors are equal to regression coefficients in the prediction equations.
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  


  

Regression calibration for multivariate exposures 

Rosner’s method for linear regression calibration

Q1 =  Q11  1 + Q12  2

   
Q2 =  Q22  2 + Q21  1

Equations can be written in matrix notation
 α  = Λ αQ Q T

where:

λ λ
Λ  = Q11 Q12 α 

,   α  = T1 
  ,   α  = 

α
Q1

Q2

α
 

Q22λ λ αQ T
Q21  T2 

Q

 
 
 

ΛQ is called the “attenuation-contamination” matrix
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What we have is a system of linear equations that can be solved using linear algebra. If 
we write the equations in matrix notation, then αQ equals ΛQ times αT, just like in the 
univariate case, except now αQ and αT are vectors and ΛQ is a matrix. 

ΛQ is called the “attenuation-contamination” matrix because it consists of the 
attenuation and contamination factors in our equations.
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
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Regression calibration for multivariate exposures 

Rosner’s method for linear regression calibration

T

T

Q

Univariate case:

Bias: α  =  λ αQ Q

Estimate: α  =  α  / λ 1
T Q   =  

Q λ αQ Q

Bivariate case:

Bias: α  = Λ αQ Q

Estimate: α  = 1Λ αT Q

Standard errors for T1

  

and T2 can be 
estimated by multivariate delta method
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In the case of a single variable measured with error, the attenuated log odds ratio is 
divided by the attenuation factor to obtain our estimate. Equivalently, we can say we 
are multiplying the inverse of the attenuation factor by the attenuated log odds ratio. 

When we have two or more variables measured with error, we do exactly the same 
thing, except this time we multiply the inverse of the attenuation-contamination matrix 
by the vector of attenuated log odds ratios. 

Standard errors for our estimates can be obtained using a multivariate version of the 
delta method. 

If this still seems complicated, I do want to mention that there are programs available 
that will perform all the necessary calculations, so you don’t have to do them yourself.
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







 

 

Regression calibration for multivariate exposures

Example: energy-adjusted fat and breast cancer

NIH-AARP Diet and Health Study

 
Logistic regression of breast cancer status (Y) 
on log total fat intake (T1

 

) and log non-alcohol 
energy intake (T2)

 
Substitution effect: adding fat intake while 
keeping non-alcohol energy constant

 
Other covariates (Z) same as for univariate fat 
and breast cancer example  
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Let’s continue our example analysis of dietary fat and breast cancer. 

We are going to perform logistic regression of breast cancer status on log total fat intake 
and log nonalcohol energy intake. By nonalcohol energy intake, we mean caloric intake 
from all sources except alcohol. 

When we include nonalcohol energy intake in the model, we are estimating what is 
called a “substitution effect” for fat intake. This means we are estimating the effect of 
substituting fat for other nonalcohol sources of energy in the diet.
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
 

Regression calibration for multivariate exposures

Example: energy-adjusted fat and breast cancer

Dietary fat intake and breast cancer risk in NIH-AARP

Correction for 
Measurement Error

Log Odds 
Ratio (s.e.)

Odds Ratio 
(95% CI)

Uncorrected 0.15 (0.05)

 

1.16 (1.05, 1.29)

  Regression calibration 0.29 (0.11)

 

1.34 (1.09, 1.66)

  1.34

  

Alternate method 0.29 (0.10)

 

(1.10, 1.64)

Adjusted for non-alcohol energy intake
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Here we see the results of the energy-adjusted analysis. Again, we see that the 
uncorrected estimate of the odds ratio is much smaller than the regression calibration 
estimates. The two regression calibration estimates are again equal, but the 95 percent 
confidence intervals are slightly different. 

Notice that none of the 95 percent confidence intervals include the value 1, which 
means that the odds ratios are statistically significantly different from 1 at the 5 percent 
significance level. We can therefore reject the null hypothesis of no association between 
fat intake and breast cancer risk. 

Why are we able to reject the null hypothesis in the energy-adjusted analysis, but are 
unable to do so in the univariate analysis? There are two possible reasons. The first is 
that we are estimating a different fat-breast cancer relationship. In the energy-adjusted 
analysis, we are estimating the effect of substituting fat for other nonalcohol sources of 
energy, while in the univariate analysis we are estimating the effect of adding fat 
without regard to any other change in the diet. The second reason, which I mentioned 
earlier, is that energy adjustment often reduces the measurement error in reported 
intake. When the measurement error is reduced, the power to detect an association is 
increased.
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CALIBRATION STUDIES
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Now we’re going to look at calibration studies in more detail. Calibration studies are a 
crucial part of regression calibration or any other method to adjust for measurement 
error.
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Calibration studies

Calibration studies







 
Studies performed to “calibrate”

 
the main study 

instrument (Q) to a reference instrument (R)

 
To calibrate Q means to develop a prediction 
equation to predict R given Q

 
The information from these studies can be used 
as the basis for regression calibration
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Calibration studies are studies that are performed to “calibrate” the main study 
instrument. To calibrate an instrument means to develop a prediction equation to 
predict true intake given reported intake. In order to do this, we must observe either 
true intake or an unbiased reference instrument in the calibration study. The prediction 
equation can then be used in regression calibration.
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






 

Calibration studies

Types of calibration studies

 
Internal calibration study: random subsample of 
main study participants

 
External calibration study: separate study of 
participants that are similar to those participating 
in the main study

 
Participants must complete the same study 
instrument (Q) that is used in the main study

Internal calibration is preferable
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There are two types of calibration studies. An internal calibration study is a random 
subsample of the main study participants, while an external calibration study is a 
separate study of participants who are similar to those participating in the main study. 
In either type of study, participants must complete the same dietary instrument that is 
being used in the main study. 

In general, internal calibration is preferable, because it assures that the participants in 
the calibration study are similar to those in the main study and that all covariates, 
including the main dietary instrument, are administered or measured in the same way.
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
 


 



Calibration studies

Reference instrument: ideal properties

Unbiased measure of individual true usual intake

Errors uncorrelated with true usual intake

 
Errors uncorrelated with errors in study 
instrument
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Ideally, the reference instrument in the calibration study should have three properties: 
First, it should provide an unbiased estimate of true intake at the individual level. 
Second, error in the reference instrument should be uncorrelated with true intake. 
Third, error should be uncorrelated with errors in the main study instrument.
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
 


 


 

Calibration studies

Reference instrument: examples

Doubly labeled water for energy intake

24-hour urinary nitrogen for protein intake

24-hour urinary potassium for potassium intake
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There are a few biomarkers of dietary intake that have been shown in feeding studies to 
have these ideal properties, at least approximately. They include: 

 

 

 

Doubly-labeled water for energy intake 

24-hour urinary nitrogen for protein intake 

24-hour urinary potassium for potassium intake. 

These three reference biomarkers can be used to develop prediction equations for 
energy, protein, and potassium. Unfortunately, for the vast majority of dietary 
components that are of interest to researchers there are no known reference 
instruments that have these ideal properties.
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Calibration studies

Reference instrument

Instruments that are usually used as a reference

24-hour recalls (one or more)

Multiple-day food records

Problems

Biased for true intake

Errors correlated with true intake

Errors correlated with errors in FFQ
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In practice, the instruments that are usually used as references in calibration studies are 
24-hour dietary recalls and multiple-day food records. These instruments provide 
estimates of intake for one or more days, and require only that the participant 
remembers what he/she ate on the previous day or writes down what he/she eats each 
day. 

There is evidence that these instruments are less biased than food frequency 
questionnaires, but they are not ideal. In studies with reference biomarkers, they have 
been shown to be biased for true intake and to have errors that are correlated with true 
intake and with the errors in an FFQ. So the question becomes: Is it better to adjust for 
measurement error using a reference instrument that is known to be biased or to not 
correct for measurement error at all?
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Calibration studies

Performance of 24HR as reference

OPEN Study: Attenuation factors estimated using recovery 
biomarker or 24HR as reference 

(Freedman et al., J Nat Cancer Inst, 2011)

Nutrient Gender Reference 
Biomarker

Reference 
24HR

Energy Men 0.08 (0.03)

 

0.21 (0.04)

 Energy Women 0.03 (0.03)

 

0.09 (0.05)

 
Protein Density Men 0.43 (0.07)

 

0.35 (0.07)

 Protein Density Women 0.33 (0.08)

 

0.45 (0.06)

 
Potassium Density Men 0.57 (0.08)

 

0.59 (0.05)

 Potassium Density Women 0.61 (0.08)

 

0.62 (0.07)
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This question was addressed in a recent commentary by Larry Freedman and colleagues.  
They based their conclusions on an analysis of the OPEN biomarker study. OPEN is a 
study of about 500 participants who provided information on dietary intake as 
measured by a food frequency questionnaire, a 24-hour dietary recall, and reference 
biomarkers for energy, protein and potassium. 

This table, taken from their commentary, shows attenuation factors for energy, protein 
density, and potassium density, estimated using either a reference biomarker or the 
24HR as a reference instrument.  

Protein and potassium density are examples of energy-adjusted dietary components.  
Protein density equals protein intake divided by total energy intake, and potassium 
density is similarly defined. 

For energy intake, we see that using 24HR as a reference results in an overestimate of 
the attenuation factor compared to using a reference biomarker. 

If the attenuation factor is overestimated, using it in regression calibration would not 
completely adjust for the true attenuation in an observed risk estimate. As a result, the 
regression calibration estimate would still be attenuated, though not as severely as the 
uncorrected risk estimate. 

For protein and potassium density, the attenuation factors estimated using 24HR are 
not that different from those estimated using a reference biomarker. This is especially 
true for potassium density, but even for protein density we see no clear pattern of over- 
or underestimation by the 24HR.
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Calibration studies

Performance of 24HR as reference


 


 


 

Attenuation factors appear to be similar for 
energy-adjusted nutrients

Freedman et al. (2011) concluded that regression 
calibration with 24HR improves estimation 
(on average) compared to no adjustment

Caveat: conclusion based on only three nutrients: 
protein, potassium and energy
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To summarize, attenuation factors estimated using a reference biomarker or 24HR 
appear to be similar for energy-adjusted dietary components. In their commentary, 
Freedman and colleagues concluded that regression calibration with a 24HR improves 
risk estimation, on average, compared with no adjustment. They included, however, the 
caveat that their conclusion was based on only three dietary components: protein, 
potassium, and energy.
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
 –

 –
 

Calibration studies

Design of calibration studies

Two important factors:

Number of participants in calibration study

Number of reference measures per participant
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I want to spend a little time discussing two important factors in the design of calibration 
studies. The first is the number of participants to include in the study, and the second is 
the number of reference measures to collect from each participant.
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



Calibration studies 

Size of calibration study

Q Q
T

Q Q Q

22 ˆˆα s.e.(α ) s.e.(λ )
ˆs.e.(α )

λ α λ

 
      

+  Q




 
1st

 
term is uncertainty of estimating attenuated 

log odds ratio in main study of size N

 
2nd

 
term is uncertainty of estimating attenuation 

factor in calibration study of size n


 

2
ε

Q 2
Q

σˆs.e.(λ ) = 
nσ

σ2
ε = residual variance in regression of R on Q
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We’ll first consider the number of participants in the calibration study. We’ll assume 
that the purpose of the study is to estimate prediction equations for regression 
calibration. We want the calibration study to be large enough so that we can get precise 
estimates of the log hazard ratios in a diet-health model. 

Here is the formula for the standard error of the de-attenuated log odds ratio. As I 
mentioned before, the standard error reflects the uncertainty of both steps of the 
regression calibration method. 

The first term inside the square root sign reflects the uncertainty of estimating the 
attenuated log odds ratio in a main study of size, capital N, while the second term 
reflects the uncertainty of estimating the attenuation factor in the calibration study of 
size, small n. It is this second term that is affected by the size of the calibration study. 
We can see this explicitly by writing the standard error of the attenuation factor as a 
function of n, the variance of Q, and the residual variance in the regression of R on Q.
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Calibration studies 

Size of calibration study



 


 

2
Q Q ε

T 2 2
Q Q Q Q

2ˆα s.e.(α ) σˆs.e.(α )
λ α n λ σ

   
       

   
+  

 
Choose n so that 2nd

 
term is a small fraction of 

1st term, say 1/10th

2
Qε

2 2
Q Q Q

2ˆs.e.(α )σ 1  = 
nλ σ 10 α

 
  
 

Solve for n
2

Qε
2 2
Q Q Q

2ασ n = 10
ˆλ σ s.e.(α )

  
    
  
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Here again is the standard error of the de-attenuated log odds ratio, this time written as 
a function of n. We want to choose n so that the second term inside the square root sign 
contributes only a small proportion of the total standard error. We do this by choosing n 
so that the second term is a small fraction of the first term, say one tenth. Then, we 
solve for n to get a formula for choosing the sample size of the calibration study.
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Calibration studies

Example: size of calibration study




 

 

2
Qε

2 2
Q Q Q

2
ασ n = 10

ˆλ σ s.e.(α )
  
    
  

 
95% CI: α   1.96 s.e.ˆ   αQ ˆ Q

Choose  s.e.(α̂ ) = α / 2Q Q

2
ε

2 2
Q Q

σ n = 40
λ σ

 
  
 

For fat intake in AARP

λ 0.28,   σ 0.25,   2 2
Q Q σε  0.34

 n = 694
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Note that the formula for n depends on the ratio of the attenuated log odds ratio to its 
standard error. This ratio determines whether or not, on average, the 95 percent 
confidence interval for the attenuated log odds ratio includes 0, which in turn 
determines whether or not the estimated association is statistically significant. 

As we saw earlier, the confidence interval for the attenuated log odds ratio equals the 
estimated log odds ratio plus or minus 1.96 times its standard error. So if the standard 
error is equal to half the size of the attenuated log odds, then the 95 percent confidence 
interval will, on average, not include 0. 

This is the point at which we want to control the standard error of the de-attenuated log 
odds ratio, so that attenuated associations that are statistically significant do not 
become nonsignificant after de-attenuation. 

Setting the standard error of αQ equal to one half αQ, we get a simplified formula for n. 
We can estimate the parameters in this formula using fat intake in the AARP study.  
Plugging them into the formula for n, we get a required sample size equal to 694. Since 
the AARP calibration study has 1,000 women, we conclude that it is large enough for 
estimating the association between fat intake and breast cancer risk.
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


 

  

Calibration studies

Number of reference measurements


 

Calibration study of sample size n, with k 
administrations of R per participant

Rk = average of k repeats of R for participant

Estimate λQ Rkby regressing       on Q

2
εk

Q 2
Q

σˆs.e.(λ ) = 
nσ


 

σ2
εk Rk= residual variance in regression of       on Q
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Now we are going to consider how the number of reference measures per person 
affects the sample size of the calibration study. 
 
Consider a calibration study with n participants and k reference measures per person.  

Let  KR  be the average of the k reference measures for each participant. We estimate 

the attenuation factor by regressing  KR on Q. As before, the standard error of the 

attenuation factor is a function of n, the variance of Q, and the residual variance in the 

regression of  KR  on Q. 
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



Calibration studies

Number of reference measurements

 2 2 2 2
εk RR R RR Q Qσ  =  σ  + σ σ  / k  λ σ 

σ2
R σRRis the variance of a single R and         is the 
 covariance between repeat R’s

 2 2 22
RR R RR Q Qεk

Q 2 2
Q Q

σ  + σ σ  / k  λ σσˆs.e.(λ ) =  = 
nσ nσ

 

Gain in precision due to additional reference 
 measurements depends on the size of  2 σ σ M MM
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The residual variance in the regression of  KR  on Q can be expressed as a function of k. 

In this expression,   is the variance of a single 24HR, and   is the covariance 

between repeat 24HR. 

2
Rσ RRσ

 
Plugging this expression into the formula for the standard error of the attenuation 
factor, we get this formula. 
 
We can see that the gain in precision due to additional reference measures depends on 

the difference between   and  . 2
Rσ RRσ
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



Calibration studies

Example: number of reference measurements

 2 2 22
RR R RR Q Qεk

Q 2 2
Q Q

σ  + σ σ  / k  λ σσˆs.e.(λ ) =  = 
nσ nσ

 

 
For fat intake in AARP

λ 0.28,   σ 0.25,   2 2
Q Q R RRσ  0.350,   σ 0.133

0.454 + 0.868 / ks.e.(λ̂Q )  =  
n

 
s.e. is a function of n and k



 

 

 

 

Slide 59 

Here is the formula for the standard error of the attenuation factor as a function of the 
various parameters. Again, we can estimate these parameters for fat intake in the AARP 
study. Plugging them into our formula, we get a simple formula that is a function of n 
and k. We can use this formula to determine the relative sample size required, 
depending on the number of repeat measurements.
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Calibration studies

Example: number of reference measurements


 

Relative sample size required in a calibration 
study with k repeats of M per participant

k n

1 1000
2 672
3 563
4 508

(Based on fat intake in AARP)
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Here is a table showing the relative size required in a calibration study with k reference 
measures per person, based on fat intake in the AARP study. 

If a calibration study with one reference measure per person required 1,000 participants 
to reach a desired precision, then a study with two measures per person would require 
672 participants to reach the same precision, while a study with four measures per 
person would require about 500 participants. 

Note that the sample size, n, is not cut in half when the number of reference measures 
per person is doubled. This means that the total number of reference measures 
required in the study increases when the number of reference measures per person 
increases. 

So, if the cost of a calibration study is driven by the cost of administering the reference 
measure, then it would be most cost-efficient to collect only one reference measure per 
person. If the cost of administering the reference measure is only one of many costs, 
then it may be more cost-efficient to collect more reference measures per person.
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Calibration studies

Minimum number of reference instruments



–




 –

–

–
 

–

 
Performing regression calibration when regression 
calibration model is linear

 
Minimum number =  1

 
Performing regression calibration when regression 
calibration model is nonlinear

 
Minimum number =  2

Estimating correlation of Q and T

 
Minimum number = 2

 
Estimating power

Assessing the quality of Q (validity)
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When deciding how many reference measures to administer to each participant in a 
calibration study, you also have to keep in mind the minimum number required for 
different purposes. 

For linear regression calibration when an FFQ is the main instrument, the minimum 
number required is one. For nonlinear regression calibration when an FFQ is the main 
instrument, the minimum number required is one or two. The slide says two, but it 
really depends on the type of nonlinearity in the model. For regression calibration when 
the 24HR is the main instrument, the minimum number required is two. And to estimate 
the correlation between true and FFQ-reported intake, the minimum number is two. 
The correlation is needed to estimate the power to test diet-health associations and to 
assess the quality or “validity” of the FFQ. 

Given these considerations, we think that, in general, it is best to collect at least two 
reference measures for each participant in the calibration study.



Dietary components that are consumed daily by most persons62

STATISTICAL TESTING AND 
REGRESSION CALIBRATION
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In this final section, I’m going to talk a little about statistical testing when dietary 
components are measured with error.
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





–

–

 

 

 

Statistical testing and regression calibration

Hypothesis testing

 
Null hypothesis: no association between dietary 
intake and the health outcome (T = 0)

 
Wald test statistic: estimated log odds ratio 
divided by its standard error

T Tˆ ˆW = α / s.e.(α )

 
W is approximately normal with

mean = E(α ) / s.e.(αT )ˆ ˆ

standard deviation = 1
T
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A major part of statistics involves hypothesis testing. The researcher formulates a 
hypothesis, called the null hypothesis, and then tests whether or not it be can rejected.  
In our examples, we will test the null hypothesis that there is no association between 
dietary intake and the health outcome.  

To test a hypothesis, we need a test statistic. We’ll use the Wald test statistic, which 
we’ll call W. In logistic regression, the Wald statistic equals the estimated log odds ratio 
divided by its standard error. The Wald statistic is known to be approximately normal, 
with expected value equal to the expected value of the estimated log odds ratio divided 
by its standard error.
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









 

 

 

Statistical testing and regression calibration

Hypothesis testing

Assumption: under null hypothesis, W has mean = 0 

Wald test: reject null hypothesis if W is too large

 cW   

 
Type I error  = reject null when null is true      
Type II error = not reject null when null is false

 
Significance level: probability of Type I error 
Power: 1 – probability of Type II error 

               

 
Controlling Type I error: choose c so that probability 
of Type 1 error is small, typically 5%
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The main assumption of the Wald test is that, under the null hypothesis, the expected 
value of the Wald statistic, W, is equal to zero. Under this assumption, large values of W 
indicate that the null hypothesis is false. So the Wald test rejects the null hypothesis if 
the absolute value of W is greater than some value, c, which is called the critical value. 

Now, there are two types of error associated with any test. Type I error occurs when the 
null hypothesis is rejected when it’s really true. Type II error occurs when the null 
hypothesis is not rejected when it really is false. 

Associated with these two types of error are the concepts of significance level and 
power. The significance level is the probability of making a Type I error, while the power 
is equal to 1 minus the probability of making a Type II error. 

Both significance level and power depend on the critical value, c, that is chosen for the 
Wald test. Ideally, one would like to choose c so as to minimize the significance level 
while maximizing the power. Unfortunately, this isn’t possible, since power is maximized 
when c is small, while the significance level is minimized when c is large. 

Since statisticians consider Type I error to be the more serious type of error, the 
strategy is to control the probability of a Type I error by choosing c so that the 
significance level is small, typically 5 percent. If the resulting power is small, then one 
has to be very careful when interpreting the results. In particular, it’s important to 
remember that failing to reject the null hypothesis is not the same as concluding that 
the null hypothesis is true. It may be that there simply wasn’t enough power to detect 
that it was false. So, whenever you fail to reject the null hypothesis, you have to 
consider what your power was.
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Statistical testing and regression calibration

Validity of statistical tests









 
A statistical test is valid if probability of a type I 
error really is at the chosen significance level

 
For Wald test, condition holds only if the mean of 
W = 0 under the null hypothesis

E(α ) / s.e.(α )ˆ ˆT TSince mean of W =                          ,  Wald test 
is valid only if

E(α̂ ) = 0  whenever  αT = 0

 

T

If estimator is unbiased (i.e., if   E(α̂ ) = α                  ), 
 

T T
then Wald test is valid
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A critical property of any test is validity. A test is valid if the probability of Type I error 
really equals the chosen significance level. For the Wald test, this condition holds only if 
the expected value of the test statistic equals zero under the null hypothesis. This 
means that the Wald test is valid only if the expected value of the estimated log odds 
ratio equals zero whenever the true log odds ratio is zero. 

Note that if the estimated log odds ratio is unbiased, then the Wald test is valid, since 
then the condition always holds. For biased estimators, however, the Wald test may or 
may not be valid.
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Statistical testing and regression calibration

Is the uncorrected test valid?






 



 
Wald test performed on the uncorrected log 
odds ratio will be called the “uncorrected test”

 
For univariate exposures, the uncorrected log 
odds ratio is biased

Q Q TˆE(α ) = λ α

Nevertheless, if T = 0, then E(α̂Q ) = 0
 

 
Uncorrected Wald test for univariate exposure is 
valid
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Now we ask: Is the uncorrected test valid? By uncorrected test, we mean the Wald test 
performed on the uncorrected log odds ratio. 

For a single dietary exposure measured with error, we know that the expected value of 
the uncorrected log odds ratio is biased, equal to the attenuation factor times the true 
log odds ratio. Nevertheless, it’s still true that whenever the true log odds ratio equals 
zero, so does the expected value of the uncorrected log odds ratio. Therefore, the 
uncorrected Wald test for a univariate exposure is valid.
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Statistical testing and regression calibration

Is the uncorrected test valid?









 
For bivariate exposures, the uncorrected log 
odds ratio has mean

 

Q1 Q11 T1 Q12 T2ˆE(α ) = λ α + λ α

When T1 = 0, 

Q1 Q12 T2ˆE(α ) = λ α

 
Uncorrected Wald test for bivariate exposures is 
not valid

 
If contamination factor λQ12

 

is sufficiently small, 
then uncorrected test is approximately valid
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For two exposures measured with error, the case is somewhat different. As we’ve seen, 
the uncorrected log odds ratio for one exposure is subject to contamination from the 
true effect of the other exposure. As a result, the uncorrected log odds ratio may be 
nonzero even when the true log odds ratio is zero. Therefore, the uncorrected test for 
two exposures is not valid. 

If, however, the contamination factor is sufficiently small, then the probability of a Type 
I error will be close to the chosen value, and we can say that the test is approximately 
valid.
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Statistical testing and regression calibration

Is the uncorrected test valid?
OPEN – Estimated Contamination Factors 
(Freedman et al., J Nat Cancer Inst, 2011)

Nutrient Gender Energy Protein 
Density

Potassium 
Density

Energy Men - -0.01 (0.03)

 

0.13 (0.05)

 
Energy Women - 0.03 (0.05)

 

0.10 (0.06)

 Protein Density Men 0.08 (0.05)

 

- -0.01 (0.09)

 
Protein Density Women 0.06 (0.05)

 

- 0.00 (0.10)

 Potassium Density Men 0.04 (0.04)

 

-0.05 (0.06)

 

-

Potassium Density Women -0.04 (0.05)

 

0.00 (0.07)

 

-

Total Fat Density Men 0.05 (0.05)

 

-0.03 (0.07)

 

0.00 (0.08)

 
Total Fat Density Women -0.07 (0.05)

 

-0.02 (0.08)

 

-0.08 (0.10)

 Saturated Fat Density Men 0.10 (0.04)

 

-0.03 (0.05)

 

-0.04 (0.07)

 
Saturated Fat Density Women -0.02 (0.04)

 

-0.01 (0.06)

 

0.07 (0.08)
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Here is another table taken from the recent commentary by Freedman and colleagues.  
It shows estimated contamination factors in the OPEN study for a model that has 
energy, protein density, potassium density, and one other nutrient density. We see that 
the estimated contamination factors are generally small, and only two are statistically 
significantly different from zero.
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Statistical testing and regression calibration

Is the uncorrected test valid?







 
Contamination factors are generally small and 
not statistically significant

 
Freedman et al. (2011) concluded that statistical 
tests for uncorrected test with multiple dietary 
exposures will be approximately valid

 
Caveat: conclusion based on only three 
nutrients: protein, potassium and energy
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Freedman and colleagues concluded from this that the uncorrected test for multiple 
dietary exposures measured with error should be approximately valid. Again, they 
included the caveat that this conclusion was based on only three nutrients for which 
reference biomarkers are available.
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




 –

–  

  

Statistical testing and regression calibration

Statistical power

 
Statistical power is the probability of rejecting the 
null hypothesis when the null hypothesis is false

 
Equivalently, the probability of detecting an 
association as statistically significant

Power depends on the size of true log odds ratio:

For T

 

close to 0, power is small

As |T| increases, power increases
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Now we’re going to look at the effect of measurement error on statistical power. As we 
saw earlier, power is the probability to reject the null hypothesis when it is false. 
Equivalently, we can say it is the probability of detecting an association as statistically 
significant when there really is an association. 

Power depends in part on the size of the true log odds ratios. For log odds ratios close to 
zero, the power will be small. As the absolute value of the log odds ratio increases, the 
power increases.
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Statistical testing and regression calibration

Statistical power for uncorrected test







 
Power of Wald test depends on |E(W)| = absolute 
value of the expected value of Wald statistic W

 
For univariate exposures, expected value of W 
for the uncorrected test is

   TE W =  Corr(Q,T)  E W

E(WT) = expected value of W if T could be 
measured without error 

 
Since |Corr(Q,T)| ≤

 
1, measurement error always 

leads to loss of power (unless |Corr(Q,T)| = 1)
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The power of the Wald test depends on the expected value of the Wald test statistic, W.  
The greater the expected value of W, the greater the power to detect the association. 

For a single dietary exposure measured with error, the expected value of W for the 
uncorrected test is equal to the correlation of reported and true intake times what the 
expected value of W would have been if true intake could have been measured. 

Since the correlation of reported and true intake is always between -1 and 1, this means 
that measurement error in reported intake always leads to a loss of power.
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




 –

–



 

  

Statistical testing and regression calibration

Example: loss of power for uncorrected test

NIH-AARP Diet and Health Study

For fat intake, estimated QT = 0.40

In a study with N subjects:

 
If power = 90% using true intake T, then 
power = 25% using Q instead of T

To get 90% power using Q, would need a 
 sample size of N / ρ2

QT  = 6.25   N

 
Similar loss of power for multivariate exposures 
measured with error
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As an example, the estimated correlation between FFQ-reported fat intake and true 
intake in the AARP study is 0.4. 

Consider a study with N subjects. If the study were designed to have 90 percent power 
to detect a fat-breast cancer association under the assumption that fat intake could be 
measured exactly, then in reality the study would only have 25 percent power to detect 
the association using the FFQ to measure intake. And in order to have 90 percent power 
using the FFQ, one would have needed over six times as many subjects. 

There would be a similar loss of power for multiple dietary exposures measured with 
error.
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Statistical testing and regression calibration

Statistical power for regression calibration


 


 

Regression calibration adjusts the estimated log 
odds ratio by dividing by the attenuation 
coefficient

T Q Q
ˆˆ ˆα = α  / λ    

However, this adjustment changes the standard 
error of the estimate

Q Q Q Q
T 2

Q Q Q

2 2ˆˆ ˆ ˆse(α ) α se(λ ) se(α )
ˆse(α ) + > ˆ ˆ ˆλ λ λ

   
       

   
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We have seen that regression calibration can correct for bias. Can it also recover lost 
power? 

As we’ve seen, regression calibration increases the attenuated log odds ratio by dividing 
it by the attenuation factor. However, because of the uncertainty added by having to 
estimate the attenuation factor, the standard error increases by an even larger amount.
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Statistical testing and regression calibration

Statistical power for regression calibration



–

–



 
As a result:

 
Expected value of test statistic W does not 
increase (it decreases slightly)

 
Wald test based on regression calibration has 
slightly less power than the unadjusted test

 
Regression calibration in its usual form corrects 
for bias, but does recover power lost due to 
measurement error
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As a result, regression calibration causes a slight decrease in the expected value of the 
Wald statistic, and so regression calibration has slightly less power than the uncorrected 
test. 

In summary, regression calibration in its usual form does not recover power lost due to 
measurement error.
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Statistical testing and regression calibration

Can regression calibration be made more powerful?





 


 

 
An enhanced version of regression calibration 
can sometimes be used to recover (some of) the 
power lost due to measurement error

 
Idea: predict T using E(T|Q, Z, C) instead of 
E(T|Q, Z), where C is a variable that:

i. Helps to predict true intake, but 

ii.
 

Is not related to disease outcome 
conditional on true intake and covariates Z

See lecture 10 in the series for fuller discussion
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Is it possible to make regression calibration more powerful? There is an enhanced 
version that can sometimes be used to recover some of the lost power. The idea is to 
add an additional variable, C, to the prediction equation for true intake, T. The variable C 
must have two special qualities: first, it helps predict true intake; and second, it is not 
related to the health outcome conditional on true intake and covariates, Z. There will be 
a fuller discussion of this idea in webinar 10, when we consider how to combine 
different self-report instruments to improve prediction of true intake.
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SUMMARY
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[No notes.]
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Summary

Summary

1.
 

 

 

 

 

Measurement error causes attenuation of estimated 
risk parameters and loss of power to detect diet-health 
associations.

2. Regression calibration is an accessible method for 
adjusting these attenuated estimates to remove bias.

3. Calibration studies are needed to provide the 
information necessary to apply regression calibration.

4. In its usual form, regression calibration does not 
recover power lost due to measurement error. 

5. Statistical tests of uncorrected risk estimates are, on 
current evidence, approximately valid.
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I’d like to summarize the main points in this talk. First, measurement error causes 
attenuation of estimated risk parameters and loss of power to detect diet-health 
associations. Second, regression calibration is an accessible method for adjusting these 
attenuated estimates to remove bias. Third, calibration studies are needed to provide 
the information necessary to apply regression calibration. Fourth, in its usual form, 
regression calibration does not recover power lost due to measurement error. Fifth, 
statistical tests of uncorrected risk estimates are, on current evidence, approximately 
valid. 
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QUESTIONS & ANSWERS
Moderator: Amy Subar

Please submit questions 
using the Chat function
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Thank you Doug. We’ll now move on to the question and answer period of the webinar. 



Measurement Error Webinar 7 Q&A 

Question: Regarding the multivariate regression analysis that was including 
multiple error-prone variables and the use of the attenuation 
contamination factor, and is that a term that’s commonly used and 
accepted in the literature? You mention it again for the Freedman paper. 

 

 

 

 

 

 

 

Yes, it’s a term that we use here at NCI in our measurement error group 
and use it in published papers. Other terms for it would be “residual 
confounding”.  I think the idea of an attenuation/contamination matrix is a 
generally used terminology. (D. Midthune) 

In the fat-cancer example you had an alcohol-cancer example, what 
percent of the standard error came from uncertainty of the regression 
calibration? 

Well, I didn’t measure it exactly. I would assume that it was not a 
substantial amount simply because when we looked at the attenuated log 
odds ratio, divided by its standard error, we got a result that was similar 
than when we looked at the de-attenuated estimate and its standard 
error. So the ratio between the two estimates and the standard errors 
didn’t change that much, so I’d say that the increase due to the 
uncertainty was not that noticeable. (D. Midthune) 

For the bootstrap example, you used normal theory formulas to get 
confidence intervals using the bootstrap standard error. Could you also 
have computed a confidence interval empirically from the bootstrap 
replicate? 

Yes, you can do that. I used the normal theory just because it was a little 
simpler to explain but an alternative method is to take the bootstrap 
estimates and find the cutpoints in that empirical distribution. And 
sometimes, under some circumstances where the normal theory doesn’t 
hold, this empirical method may be superior. (D. Midthune) 

If 24 hour recalls are used as reference instruments, is there any benefit 
to modeling multiple prediction equations jointly instead of one at a 
time? So if two exposures are measured at the same time, like fat and 
vitamin C, can the temporal similarity provide additional precision? 

Well, it can under certain conditions. In this example, we have two 
prediction equations and both prediction equations include both reported 
intakes measured with error, so T, true intake 1, was related to both 
reported intakes 1 and 2. And if that’s the case, then you don’t really gain 
any precision by modeling jointly. But if you can, maybe by testing, 



determine that the first prediction equation only depends on the first 
reported intake, and the second prediction equation only depends on the 
second reported intake, then you can actually get gain by modeling them 
jointly. This is basically the idea of seemingly unrelated equations, or in 
this case seemingly unrelated measurement error models. (D. Midthune) 

  

   

 

 

 

 

This refers to the bootstrap procedure you described, the two-stage 
bootstrap procedure. So it can be done in two ways: You get the 
estimate at the first step and then apply the best estimate to the second 
step, or bootstrapping the two stages simultaneously. Which would you 
recommend? 

Well, I would say it actually depends on the software you have. Like I said, 
they give exactly the same (parameter) estimates and very similar 
estimates of the confidence intervals. The only exception is the bootstrap 
method may work better when some of your underlying assumptions 
about the normality of the data are violated in an extreme manner. If they 
are approximately normally distributed, then either method should give 
similar results. So the what I called the Rosner method is a little simpler in 
that you don’t have to do this bootstrap sampling, so I’d say it’s a matter 
of convenience. (D. Midthune) 

Other than using at least two reference instruments like two recalls, do 
you have any general rules for planning the number of measurements 
and sample size for epi studies? 

Actually, we’re going to be considering that; actually, I’m giving the tenth 
webinar, which is about combining dietary instruments, and so in that talk 
we’re going to consider how many reference instruments are ideal, or 
perhaps not ideal but at least better than otherwise. (D. Midthune) 

Is there a limit to how small an attenuation factor can be before you 
would hesitate to use these adjustment methods? 

Well, definitely, the smaller the attenuation factor the more uncertain any 
adjustment is going to be. I don’t know if there is a hard limit but, 
certainly, I would say if the attenuation factor is below .2, .3; you definitely 
would not want to use it if it gets close to zero, because dividing by zero 
basically inflates your log odds ratio to infinity. So you want to keep your 
estimate away from zero. So maybe .3 might be a rule of thumb. (D. 
Midthune) 
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Thank you very much, Doug, and thanks to our audience for joining today’s webinar.  
Please join us next week for webinar 8, when Dr. Victor Kipnis will continue the 
discussion of methods of accounting for measurement error in the assessment of diet 
and health relationships, but this time with a focus on episodically-consumed dietary 
components.  


	Measurement Error Webinar 7: Assessing Diet-Health Relationships: Focus on Dietary Components Consumed Daily by Nearly All Persons

	Regression Calibration for Univariate Exposures

	Regression Calibration for Multivariate Exposures

	Calibration Studies
	Statistical Testing and Regression Calibration

	Summary

	Questions and Answers

	Next Session





